搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
α+β两相区压缩变形后TC21合金的显微组织模拟
          
Simulation of Microstructure of TC21 Alloy after CompressionDeformation in α+β Two-Phase Region

摘    要
使用Gleeble-3500型热模拟试验机对轧制态TC21合金在α+β两相区进行压缩变形试验,研究了合金在不同热变形温度(870~960℃)、不同应变速率(0.001~1 s-1)条件下的组织和流变应力曲线,建立了流变应力本构方程和动态再结晶位错密度模型,并进行了显微组织模拟及验证。结果表明:合金的流变应力曲线呈现的软化机制以动态再结晶为主;应变速率一定时,变形后组织中α相含量随变形温度升高不断减少,α相尺寸先增大后减小;变形温度为870,900℃时,α相尺寸随应变速率增大而先减小后增大,变形温度升至930℃靠近相变点时,α相含量急剧减少,随应变速率增大,β相晶粒发生动态再结晶,晶粒细化;建立的应力计算模型用于峰值应力的预测,其结果较为准确,平均相对误差为6.274%;基于流变应力本构方程和位错密度模型进行的动态再结晶组织演变模拟结果与试验得到的显微组织基本相符,计算模型较为准确。
标    签 TC21合金   α相   动态再结晶   本构方程   位错密度   TC21 alloy   α phase   dynamic recrystallization   constitutive equation   dislocation density  
 
Abstract
The compression deformation test of as-rolled TC21 alloy in α+β two-phase region was carried out by using Gleeble-3500 thermal simulation test machine. The microstructure and flow stress curves of the alloys at different hot deformation temperatures (870-960℃) and strain rates (0.001-1 s-1) were studied. The flow stress constitutive equation and dynamic recrystallization dislocation density model were established, and the microstructure was simulated and verified. The results show that the softening mechanism of flow stress curve of the alloy was mainly dynamic recrystallization. When the strain rate was constant, the content of α phase in the deformed microstructure decreased continuously with increasing deformation temperature, and the size of α phase increased first and then decreased. When the deformation temperature was 870℃ and 900℃, the size of α phase decreased first and then increased with increasing strain rate. When the deformation temperature reached 930℃, which was close to the transformation point, the α phase content decreased sharply, and the β phase grain was dynamically recrystallized, and the grain size was refined. The established stress calculation model was used to predict the peak stress, and the results were relatively accurate with an average relative error of 6.274%. The simulation results of the dynamic recrystallization microstructure based on the flow stress constitutive equation and the dislocation density model were basically consistent with the microstructure obtained by the experiment, and the calculation model was relatively accurate.

中图分类号 TG146   DOI 10.11973/jxgccl202203012

 
  购买该论文  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 2021年度高校国内访问工程师校企合作项目(FG2021304)

收稿日期 2021/7/22

修改稿日期 2022/1/27

网络出版日期

作者单位点击查看

备注余新平(1990-),男,浙江衢州人,讲师,硕士

引用该论文: YU Xinping,PAN Guangyong,HUANG Qinghua,PAN Qiaoyu. Simulation of Microstructure of TC21 Alloy after CompressionDeformation in α+β Two-Phase Region[J]. Materials for mechancial engineering, 2022, 46(3): 68~74
余新平,潘光永,黄庆华,潘巧玉. α+β两相区压缩变形后TC21合金的显微组织模拟[J]. 机械工程材料, 2022, 46(3): 68~74


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】郑逸超, 聂宝华, 宗尉萌, 等.TC21钛合金显微组织对超长寿命疲劳行为的影响[J].实验力学, 2017, 32(1):57-62. ZHENG Y C, NIE B H, ZONG W M, et al.On the effect of microscopic structure on super long life fatigue behavior of TC21 titanium alloy[J].Journal of Experimental Mechanics, 2017, 32(1):57-62.
 
【2】张欣雨, 贾蔚菊, 毛小南, 等.TC21G钛合金平面应变变形行为及其机理[J].中国有色金属学报, 2021, 31(1):49-56. ZHANG X Y, JIA W J, MAO X N, et al.Hot deformation behavior in plane strain compression and its mechanism of TC21G titanium alloy[J].The Chinese Journal of Nonferrous Metals, 2021, 31(1):49-56.
 
【3】魏幸, 毛小南, 侯智敏.Ti-62222S合金热处理工艺的研究[J].热加工工艺, 2014, 43(4):205-208. WEI X, MAO X N, HOU Z M.Study on heat treatment process of Ti-62222S alloy[J].Hot Working Technology, 2014, 43(4):205-208.
 
【4】王英杰, 金升.金属材料及热处理[M].北京:机械工业出版社, 2006:16-16. WANG Y J, JIN S.Metal materials and heat treatment[M].Beijing:China Machine Press, 2006:16-16.
 
【5】朱知寿.航空结构用新型高性能钛合金材料技术研究与发展[J].航空科学技术, 2012, 23(1):5-9. ZHU Z S.Research and development of advanced new type titanium alloys for aeronautical applications[J].Aeronautical Science & Technology, 2012, 23(1):5-9.
 
【6】朱知寿, 王新南, 顾伟, 等.TC21钛合金高温热变形行为研究[J].中国材料进展, 2009, 28(2):51-55. ZHU Z S, WANG X N, GU W, et al.Study on high temperature deformation behaviors of new type TC21 titanium alloy[J].Materials China, 2009, 28(2):51-55.
 
【7】冯菲, 曾卫东, 朱艳春, 等.铸态TC21钛合金高温热变形行为及加工图[J].稀有金属材料与工程, 2012, 41(2):251-255. FENG F, ZENG W D, ZHU Y C, et al.Hot deformation behavior and processing map of as-cast TC21 alloy[J].Rare Metal Materials and Engineering, 2012, 41(2):251-255.
 
【8】余新平, 董洪波.TC21钛合金β锻动态再结晶行为及晶粒尺寸预测[J].塑性工程学报, 2015, 22(1):39-45. YU X P, DONG H B.Prediction of dynamic recrystalization and grain size of TC21 titanium alloy in β forging[J].Journal of Plasticity Engineering, 2015, 22(1):39-45.
 
【9】钱匡武, 李效琦, 萧林钢, 等.金属和合金中的动态应变时效现象[J].福州大学学报(自然科学版), 2001, 29(6):8-23. QIAN K W, LI X Q, XIAO L G, et al.Dynamic strain aging phenomenon in metals and alloys[J].Journal of Fuzhou University (Natural Sciences Edtion), 2001, 29(6):8-23.
 
【10】于卫新, 李士凯, 尹艳超, 等.Ti6321合金丝成形过程中组织结构和性能演变研究[J].稀有金属材料与工程, 2017, 46(S1):171-174. YU W X, LI S K, YIN Y C, et al.Variation of microstructure and mechanical properties of Ti6321 alloy wire during the forming process[J].Rare Metal Materials and Engineering, 2017, 46(S1):171-174.
 
【11】ZHANG D, LIU Y Z, ZHOU L Y, et al.Dynamic recrystallization behavior of GCr15SiMn bearing steel during hot deformation[J].Journal of Iron and Steel Research, International, 2014, 21(11):1042-1048.
 
【12】康荻娜, 庞玉华, 罗远, 等.F45MnVS钢热变形本构方程[J].钢铁, 2020, 55(9):104-110. KANG D N, PANG Y H, LUO Y, et al.Constitutive equation for hot deformation of F45MnVS steel[J].Iron & Steel, 2020, 55(9):104-110.
 
【13】SELLARS C M, MCTEGART W J.On the mechanism of hot deformation[J].Acta Metallurgica, 1966, 14(9):1136-1138.
 
【14】余新平.环轧态Ti40钛合金热变形组织演变及本构关系研究[J].塑性工程学报, 2018, 25(5):228-233. YU X P.Study on microstructure evolution and constitutive relation of ring rolling state Ti40 titanium alloy in thermal deformation[J].Journal of Plasticity Engineering, 2018, 25(5):228-233.
 
【15】SARKAR A, CHAKRAVARTTY J K, SAMAJDAR I.The avrami kinetics of dynamic recrystallization in cadmium[J].Metallurgical and Materials Transactions A, 2010, 41(10):2466-2470.
 
【16】JONAS J J, QUELENNEC X, JIANG L, et al.The avrami kinetics of dynamic recrystallization[J].Acta Materialia, 2009, 57(9):2748-2756.
 
相关信息
   标题 相关频次
 热拉伸变形及固溶时效处理对TC4-DT钛合金显微组织的影响
 8
 铸态GCr15SiMn轴承钢的流变应力本构方程
 6
 40CrNi2MoE钢的高温塑性变形特征
 4
 AZ61镁合金的热压缩变形行为及组织演变
 4
 奥氏体不锈钢的热压缩本构方程及动态再结晶行为
 4
 低碳钢高温变形行为及其本构方程的建立
 4
 0.5%石墨烯增强铝基复合材料的热变形行为
 2
 10B06冷镦钢连铸坯的热压缩流变行为
 2
 20Cr2Ni4A钢的高温热变形行为及热加工图
 2
 2219铝合金热压缩时的流变应力本构方程
 2
 2524铝合金的蠕变时效行为及本构方程
 2
 45钢控轧控冷工艺模拟试验
 2
 60Si2CrVAT高强度弹簧钢的热压缩变形本构方程
 2
 7075/6009铝合金复合材料热压缩变形的本构方程
 2
 7075铝合金热塑性变形动态再结晶动力学模型
 2
 AA5083合金在200~525℃的拉伸流变行为
 2
 Al-8.8Zn-1.4Mg-0.5Cu-0.1Sc-0.1Er-0.1Zr合金的热变形行为及热加工图
 2
 AZ91镁合金的热压缩变形行为及晶粒细化
 2
 BH10Mn2G焊接用钢的热变形行为
 2
 C72900铜合金与15-5PH不锈钢的动态力学性能及本构关系
 2
 Cr8钢的动态再结晶行为及组织转变
 2
 Cr9Mo高合金钢的热流变应力本构方程
 2
 CuNiSiP合金的动态再结晶行为
 2
 DP处理后GH4169合金在热变形过程中的组织演变
 2
 F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟
 2
 Fe-0.2C-7Mn中锰钢的单道次热压缩变形行为及热加工图
 2
 Fe-3.0% Si-0.09% Nb取向硅钢的高温流变应力
 2
 FV520B马氏体不锈钢的热变形行为和本构关系
 2
 GH4169镍基高温合金的热变形行为与再结晶模型
 2
 HG700汽车大梁钢的热变形行为及流变应力本构模型的建立
 2