搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
奥氏体不锈钢的热压缩本构方程及动态再结晶行为
          
Thermal Compression Constitutive Equation and Dynamic Recrystallization Behavior of Austenitic Stainless Steel

摘    要
利用Gleeble热力模拟试验机研究了304奥氏体不锈钢在变形温度950~1 150℃、应变速率0.05~1 s-1条件下的热压缩行为,根据真应力-真应变曲线,基于Arrhenius模型构建其在高温下的本构方程,并建立热加工图;基于试验数据建立动态再结晶模型,采用Deform软件对该钢的再结晶行为进行模拟,并进行试验验证。结果表明:随着应变速率的增大或变形温度的降低,不锈钢的流变应力增大;在变形温度1 080~1 120℃、应变速率0.05~0.2 s-1和变形温度1 120~1 150℃、应变速率0.5~1 s-1下,该钢具有良好的热加工性能;模拟得到在变形温度1 000℃、应变速率0.05 s-1和变形温度1 100℃、应变速率0.05 s-1下,试样心部再结晶晶粒体积分数和尺寸与试验结果间的相对误差小于7.62%,验证动态再结晶模型的准确性。
标    签 304不锈钢   热压缩   本构方程   动态再结晶   304 stainless steel   thermal compression   constitutive equation   dynamic recrystallization  
 
Abstract
The thermal compression behavior of 304 austenitic stainless steel under the conditions of deformation temperature of 950-1 150℃ and strain rate of 0.05-1 s-1was studied by Gleeble thermal simulator. According to the true stress-strain curve, the constitutive equation at high temperature was constructed based on Arrhenius model, and the processing map was established. Based on the experimental data, a dynamic recrystallization model was established, and the recrystallization behavior of the steel was simulated by Deform software, and was verified by test. The results show that the flow stress of stainless steel increased with increasing strain rate or decreasing deformation temperature. When the deformation temperature was 1 080-1 120℃, the strain rate was 0.05-0.2 s-1, and the deformation temperature was 1 120-1 150℃, the strain rate was 0.5-1 s-1, the steel had good hot working properties. When the deformation temperature was 1 000℃, the strain rate was 0.05 s-1, and the deformation temperature was 1 100℃, the strain rate was 0.05 s-1, the relative error of the recrystallization grain volume fraction in the sample center and grain size between simulation and test results was smaller than 7.62%, which verified the accuracy of dynamic recrystallization model.

中图分类号 TG142.71   DOI 10.11973/jxgccl202206009

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 江苏省高等学校自然科学研究重大项目(19KJA520003);南京工程学院大学生科技创新基金资助项目(TB20211610)

收稿日期 2021/9/13

修改稿日期 2022/5/11

网络出版日期

作者单位点击查看

备注孙文伟(1997-),男,江苏泰州人,硕士研究生通信作者:毛向阳教授

引用该论文: SUN Wenwei,ZHANG Chuhan,ZHAO Yajun,WANG Junya,ZHAO Xiuming,MAO Xiangyang. Thermal Compression Constitutive Equation and Dynamic Recrystallization Behavior of Austenitic Stainless Steel[J]. Materials for mechancial engineering, 2022, 46(6): 49~56
孙文伟,张楚函,赵亚军,王均亚,赵秀明,毛向阳. 奥氏体不锈钢的热压缩本构方程及动态再结晶行为[J]. 机械工程材料, 2022, 46(6): 49~56


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】史勤益,颜余仁,赵先锐,等.304奥氏体不锈钢的热处理工艺研究[J].科学技术与工程,2011,11(24):5910-5913. SHI Q Y,YAN Y R,ZHAO X R,et al.Heat treatment process of 304 austenitic stainless steel[J].Science Technology and Engineering,2011,11(24):5910-5913.
 
【2】BANSOD A V,PATIL A P,MOON A P,et al.Intergranular corrosion behavior of low-nickel and 304 austenitic stainless steels[J].Journal of Materials Engineering and Performance,2016,25(9):3615-3626.
 
【3】WANG S L, YANG B, ZHANG M X, et al. Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants[J]. Annals of Nuclear Energy, 2016,87(2):176-185.
 
【4】YING H, LIU G W, ZOU D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science&Engineering:A, 2013, 565(10):342-350.
 
【5】魏猛,陈海涛,郎宇平,等.316LN不锈钢动态再结晶研究[J].热加工工艺,2012,41(14):97-101. WEI M,CHEN H T,LANG Y P,et al.Dynamic recrystallization behavior of 316LN stainless steel[J].Hot Working Technology,2012,41(14):97-101.
 
【6】NIKULIN S A,NECHAIKINA T A,ROZHNOV A B,et al.Structure and mechanical properties of a three-layer steel/vanadium alloy/steel material after radial forging[J].Metal Science and Heat Treatment,2018,60(3/4):229-235.
 
【7】廖喜平,谢其军,胡成亮,等.304奥氏体不锈钢热变形行为及热加工图[J].锻压技术,2017,42(12):150-156. LIAO X P,XIE Q J,HU C L,et al.Hot deformation behavior and processing map of austenite stainless steel 304[J].Forging&Stamping Technology,2017,42(12):150-156.
 
【8】SWITZNER N T, SAWYER E T, EVERHART W A, et al. Predicting microstructure and strength for AISI 304L stainless steel forgings[J]. Materials Science and Engineering:A, 2019, 745(4):474-483.
 
【9】陈飞,朱华佳,李佳航,等.大锻件非连续热变形组织演变宏微观模拟[J].塑性工程学报,2020,27(5):41-52. CHEN F,ZHU H J,LI J H,et al.Macro and micro simulation of discontinuous hot deformation microstructure evolution of large forgings[J].Journal of Plasticity Engineering,2020,27(5):41-52.
 
【10】杨晓雅,何岸,谢甘霖,等.核电用奥氏体不锈钢的动态再结晶行为[J].工程科学学报,2015,37(11):1447-1455. YANG X Y,HE A,XIE G L,et al.Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants[J].Chinese Journal of Engineering,2015,37(11):1447-1455.
 
【11】程晓农,桂香,罗锐,等.核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J].材料导报,2019,33(11):1775-1781. CHENG X N,GUI X,LUO R,et al.Constitutive equation and dynamic recrystallization behavior of 316L austenitic stainless steel for nuclear power equipment[J].Materials Reports,2019,33(11):1775-1781.
 
【12】ROUT M, RANJAN R, PAL S K, et al. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel[J]. Materials Science and Engineering:A, 2018, 711(10):378-388.
 
【13】XIONG Q, ROBSON J D, CHANG L, et al. Numerical simulation of grain boundary carbides evolution in 316H stainless steel[J]. Journal of Nuclear Materials, 2018, 508(8):299-309.
 
【14】SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
 
【15】ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
 
【16】PRASAD Y, GEGEL H L, DORAIVELU S M, et al. Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
 
【17】PRASAD Y, SESHACHARYULU T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6):243-258.
 
【18】吕建平,王晓辉,刘振宝,等.Custom450钢热加工图及显微组织分析[J].钢铁,2021,56(6):94-99. LV J P,WNAG X H,LIU Z B,et al.Hot processing map and corresponding microstructural analysis of custom450 stainless steel[J].Iron and Steel,2021,56(6):94-99.
 
【19】胡家齐,王长军,杨哲,等.AM355不锈钢的热变形行为[J].金属热处理,2020,45(3):50-59. HU J Q,WANG C J,YANG Z,et al.Hot deformation behaviors of AM355 stainless steel[J].Heat Treatment of Metals,2020,45(3):50-59.
 
【20】储滔,沈慧,斯庭智.30CrNi3MoV钢的热变形行为及热加工图[J].金属热处理,2020,45(10):24-30. CHU T,SHEN H,SI T Z,et al.Hot deformation behavior and hot processing map of 30CrNi3MoV steel[J].Heat Treatment of Metals,2020,45(10):24-30.
 
【21】SHI Z X, YAN X F, DUAN C H. Characterization of hot deformation behavior of GH925 superalloy using constitutive equation, processing map and microstructure observation[J]. Journal of Alloys and Compounds, 2015, 652:30-38.
 
【22】ZIEGLER H. Progress in solid mechanics[M]. New York:Wiley Press, 1963, 4:93.
 
【23】林伟强.基于Deform金属锻造和热处理的晶粒度分析及组织遗传研究[D].广州:华南理工大学,2012. LIN W Q.Based on deform analysis of the grain size and research of organization inheritance during metal forging and heat treatment[D].Guangzhou:South China University of Technology,2012.
 
【24】SELLARS C M, WHITEMAN J A. Recrystallization and grain growth in hot rolling[J]. Metal Science Journal, 1978, 13(3/4):187-194.
 
【25】冯瑞,王克鲁,鲁世强,等.BT25钛合金β相区动态再结晶行为及数值模拟[J].稀有金属材料与工程,2021,50(3):894-901. FENG R,WANG K L,LU S Q,et al.Dynamic recrystallization behavior and numerical simulation of β phase of BT25 titanium alloy[J].Rare Metal Materials and Engineering,2021,50(3):894-901.
 
【26】HE A,WANG X T,XIE G L,et al.Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J].Journal of Iron and Steel Research (International),2015,22(8):721-729.
 
【27】孙宇,周琛,万志鹏,等.金属材料动态再结晶模型研究现状[J].材料导报,2017,31(13):12-16. SUN Y,ZHOU C,WAN Z P,et al.Current research status of dynamic recrystallization model of metallic materials[J].Materials Review,2017,31(13):12-16.
 
【28】黄可,刘江,陶永德,等.GH4720Li合金流变力学Arrhenius本构方程的建立和再结晶形核机制分析[J].材料热处理学报,2019,40(1):141-148. HUANG K,LIU J,TAO Y D,et al.Establishment of Arrhenius constitutive equation for flow mechanics and analysis of recrystallization nucleation mechanism of GH4720Li alloy[J].Transactions of Materials and Heat Treatment,2019,40(1):141-148.
 
相关信息
   标题 相关频次
 38MnVS非调质钢汽车半轴的研制
 4
 40CrNi2MoE钢的高温塑性变形特征
 4
 AZ61镁合金的热压缩变形行为及组织演变
 4
 α+β两相区压缩变形后TC21合金的显微组织模拟
 4
 表面预置铬粉超声冲击和退火处理后半高速钢的显微组织和耐磨性能
 4
 低碳钢高温变形行为及其本构方程的建立
 4
 铸态GCr15SiMn轴承钢的流变应力本构方程
 4
 2219铝合金热压缩时的流变应力本构方程
 3
 AZ91镁合金的热压缩变形行为及晶粒细化
 3
 WE43镁合金的热变形行为及热加工图
 3
 不同变形量下20CrNi2Mo钢的热压缩变形行为
 3
 粉末热等静压制备Ti6Al4V合金在α+β两相区的热压缩行为
 3
 抗大变形管线钢的动态再结晶行为
 3
 热压缩参数对M50NiL轴承钢动态再结晶行为的影响
 3
 0.5%石墨烯增强铝基复合材料的热变形行为
 2
 10B06冷镦钢连铸坯的热压缩流变行为
 2
 20Cr2Ni4A钢的高温热变形行为及热加工图
 2
 2524铝合金的蠕变时效行为及本构方程
 2
 304不锈钢编码器小轴断裂原因
 2
 304不锈钢表面直流磁控溅射钛膜的耐蚀性
 2
 304不锈钢薄壁焊管表面残余拉应力的测定及消除
 2
 304不锈钢的超高周疲劳性能
 2
 304不锈钢低温分离器开裂原因分析
 2
 304不锈钢防盗罩锈蚀原因分析
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 304不锈钢和铁素体不锈钢晶粒显示的新腐蚀方法
 2
 304不锈钢晶间腐蚀敏感性的评定
 2
 304不锈钢晶间敏化行为
 2
 304不锈钢晶粒尺寸的超声检测
 2
 304不锈钢冷却管束加工缺陷产生原因分析
 2