搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
退火温度对纳米晶铜微观结构和力学性能的影响
          
Influence of Annealing Temperature on Microstructure and Mechanical Properties of Nanocrystalline Copper

摘    要
采用电沉积法制备得到厚度约600 μm的块体纳米晶铜,并在100~250℃下进行退火处理,研究了退火温度对纳米晶铜微观结构和力学性能的影响。结果表明:未退火及退火后纳米晶铜均呈现面心立方结构;随着退火温度从100℃增加至250℃,纳米晶铜(200)晶面的衍射峰强度逐渐增强。随着退火温度的升高,纳米晶铜的抗拉强度逐渐减小,断后伸长率先增大后减小,表面拉伸变形带和拉伸断口上大而深的韧窝数量均增加;200℃退火后纳米晶铜的拉伸性能较佳,抗拉强度高约500 MPa,断后伸长率近30.5%。
标    签 电沉积   热处理   力学性能   应变硬化   electrodeposition   heat treatment   mechanical property   strain hardening  
 
Abstract
Bulk nanocrystalline copper with a thinkness of about 600 μm was prepared by electrodeposition, and then was annealed at 100-250℃. The effect of the annealing temperature on the microstructure and mechanical properties of the nanocrystalline copper was studied. The results show that both unannealed and annealed nanocrystalline copper showed a face-centered cubic structure. As the annealing temperature rose from 100℃ to 250℃, the diffraction peak intensity of (200) crystal faces of the nanocrystalline copper gradually increased. With the increase of annealing temperature, the tensile strength of the nanocrystalline copper gradually decreased while the elongation after fracture increased first and then decreased; and the numbers of both the surface tensile deformation zones and the large and deep dimples on the tensile fracture increased. The nanocrystalline copper had the relatively good tensile properties after annealing at 200℃, with the tensile strength up to about 500 MPa and the elongation after fracture of nearly 30.5%.

中图分类号 THK142   DOI 10.11973/jxgccl202208004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目

收稿日期 2021/5/17

修改稿日期 2022/5/30

网络出版日期

作者单位点击查看

备注刘林波(1994-),男,河南济源人,硕士研究生

引用该论文: LIU Linbo,CHEN Jiawen,SHEN Xixun. Influence of Annealing Temperature on Microstructure and Mechanical Properties of Nanocrystalline Copper[J]. Materials for mechancial engineering, 2022, 46(8): 22~27
刘林波,陈佳文,沈喜训. 退火温度对纳米晶铜微观结构和力学性能的影响[J]. 机械工程材料, 2022, 46(8): 22~27


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】王梦圆.层状碳纳米材料增强铜基复合材料的制备及力学性能研究[D].昆明:昆明理工大学,2020.WANG M Y.Preparation and mechanical properties of layered carbon nanomaterials reinforced copper matrix composites[D].Kunming:Kunming University of Science and Technology,2020.
 
【2】张姣.电沉积纳米孪晶铜的制备和力学性能的研究[D].长春:吉林大学,2010.ZHANG J.Synthesis and mechanical property of nano-sized growth twins Cu by electrochemical depositing technique[D].Changchun:Jilin University,2010.
 
【3】WANG Z Y,CAI X L,YANG C J,et al.Improving strength and high electrical conductivity of multi-walled carbon nanotubes/copper composites fabricated by electrodeposition and powder metallurgy[J].Journal of Alloys and Compounds,2018,735:905-913.
 
【4】GRUJICIC D,PESIC B.Electrodeposition of copper:The nucleation mechanisms[J].Electrochimica Acta,2002,47(18):2901-2912.
 
【5】YAMAMOTO T,IGAWA K,TANG H,et al.Effects of current density on mechanical properties of electroplated nickel with high speed sulfamate bath[J].Microelectronic Engineering,2019,213:18-23.
 
【6】DAS D,SAMANTA A,CHATTOPADHYAY P P,et al.Mechanical properties of bulk ultrfine-grained copper[J].Inorganic and Nano-Metal Chemistry,2006,36:221-225.
 
【7】FANG T H,LI W L,TAO N R,et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J].Science,2011,331:587.
 
【8】WANG G Y,JIANG Z H,JIANG Q,et al.Mechanical behavior of an electrodeposited nanostructured Cu with a mixture of nanocrystalline grains and nanoscale growth twins in submicrometer grains[J].Journal of Applied Physics,2008,104.
 
【9】SUN L G,WU G,WANG Q,et al.Nanostructural metallic materials:Structures and mechanical properties[J].Materials Today,2020,38:114-135.
 
【10】李松.电沉积纳米结构镍钴合金的制备及性能研究[D].长春:吉林大学,2018.LI S.Preparation and properties study of electrodeposited nano-structured Ni-Co alloy[D].Changchun:Jilin University,2018.
 
【11】贾卫平,姚井龙,吴蒙华,等.热处理对Ni-TiN纳米复合镀层结构和性能的影响[J].表面技术,2017,46(7):110-116.JIA W P,YAO J L,WU M H,et al.Effect of heat treatment on structure and properties of Ni-TiN nano composite coating[J].Surface Technology,2017,46(7):110-116.
 
【12】LEI W W,LIANG W,WANG H X,et al.Effect of annealing on the texture and mechanical properties of pure Mg by ECAP at room temperature[J].Vacuum,2017,144:281-285.
 
【13】王国勇.电沉积纳米晶铜微观组织与变形机制的研究[D].长春:吉林大学,2009.WANG G Y.The microstructure of electrodeposited nanocrystalline copper and its deformation mechanism[D].Changchun:Jilin University,2009.
 
【14】GUO N,LI D R,YU H B,et al.Annealing behavior of gradient structured copper and its effect on mechanical properties[J].Materials Science and Engineering:A,2017,702:331-342.
 
【15】YANG J Z,BU K,SONG K X,et al.Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips[J].Materials Science and Engineering:A,2020,798:140120.
 
【16】ZHENG B,SHEN X X,JIAO H S,et al.Enhanced mechanical properties of multilayered Cu with modulated grain size distribution[J].Advanced Engineering Materials,2018,20(4):1700849.
 
【17】吴勐.多尺度复合层状纳米晶镍的制备及其力学性能研究[D].上海:上海电力学院,2017.WU M.Preparation and mechanical properties of multiscale composite layered nanocrystalline Ni[D].Shanghai:Shanghai University of Electric Power,2017.
 
【18】邱良生.层厚比对Al/Ni含能结构材料力学性能及放热反应的影响[D].南京:南京航空航天大学,2019.QIU L S.Effect of original layer thicknesses on mechanical properties and exothermic reactions of Al/Ni energetic structural material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2019.
 
【19】WU X L,ZHU Y T,LU K.Ductility and strain hardening in gradient and lamellar structured materials[J].Scripta Materialia,2020,186:321-325.
 
【20】ZHANG H,WANG H Y,WANG J G,et al.The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys[J].Journal of Alloys and Compounds,2019,780:312-317.
 
【21】SCHUH B,PIPPAN R,HOHENWARTER A.Tailoring bimodal grain size structures in nanocrystalline compositionally complex alloys to improve ductility[J].Materials Science and Engineering:A,2019,748:379-385.
 
【22】田程,张雪敏,段晓辉,等.不同热处理温度对TA15钛合金组织和力学性能的影响[J].世界有色金属,2020(19):160-161.TIAN C,ZHANG X M,DUAN X H,et al.Effects of different heat treatment temperatures on microstructure and mechanical properties of TA15 titanium alloy[J].World Nonferrous Metals,2020(19):160-161.
 
【23】WU X L,ZHU Y T.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5(8):527-532.
 
【24】MA E,ZHU T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J].Materials Today,2017,20(6):323-331.
 
【25】ZHU Y T,AMEYAMA K,ANDERSON P M,et al.Heterostructured materials:Superior properties from hetero-zone interaction[J].Materials Research Letters,2021,9(1):1-31.
 
【26】SHEN X X,WU M,JI D M,et al.The mechanical behavior of a layered nanostructured Ni with an alternating growth of ultrafine grains and nano-sized grains fabricated by electrodeposition[J].Materials Science and Engineering:A,2018,713:43-51.
 
相关信息
   标题 相关频次
 热处理工艺对泡沫铁结构与性能的影响
 5
 960MPa级含钼低碳钢钼含量与热处理工艺的确定
 4
 Ti-6Al-4V合金厚板固溶时效热处理工艺的正交试验优化
 4
 ZA40合金热处理工艺的确定
 4
 ZG15Cr2Mo1钢力学性能差异较大的原因分析
 4
 焊后热处理对12Cr1MoV钢管焊接接头组织与性能的影响
 4
 焊前和焊后热处理对2195铝锂合金双面搅拌摩擦焊接头组织与性能的影响
 4
 化学成分和热处理工艺对1Cr10Mo1NiWVNbN转子钢力学性能的影响
 4
 混合稀土及热处理对A356合金组织与性能的影响
 4
 矫顽力在碳钢热处理质量预评定中的应用
 4
 铝含量对TB5钛合金组织和力学性能的影响
 4
 喷射沉积SiCp/Al-20Si-4.5Cu梯度复合材料的优化热处理工艺
 4
 氢气增压机活塞杆断裂原因
 4
 热处理对A286铁基高温合金激光焊接接头组织和性能的影响
 4
 热处理对Ni-Ga-Fe系铁磁形状记忆合金力学及耐蚀性能的影响
 4
 热处理工艺对含铌GH2132合金组织和性能的影响
 4
 热处理前后镍基高温合金激光熔覆层的组织和力学性能
 4
 热处理温度对X12CrNi13马氏体不锈钢组织和力学性能的影响
 4
 轧制方式和热处理工艺对TC4-DT钛合金板材各向力学性能的影响
 4
 质子交换膜燃料电池用不锈钢双极板氮化Cr镀层的耐蚀性
 4
 42CrMo钢齿轮轴断裂原因分析
 3
 GH648合金的热处理适应性
 3
 超超临界汽轮机用耐热钢热处理工艺的优化
 3
 热处理对WCp/2024Al复合材料耐蚀性能及力学性能的影响
 3
 微量元素对18Ni马氏体时效钢显微组织和力学性能的影响
 3
 一步电沉积Ca-P/CTS复合涂层的制备及其耐蚀性
 3
 增强型13Cr不锈钢经不同工艺调质后的显微组织和力学性能
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1 000 MW核电汽轮机空心螺栓断裂原因分析
 2