搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
多巴胺改性氧化石墨烯对环氧富锌涂层性能的影响
          
Effect of Dopamine Modified GO on Properties of Epoxy Zinc-Rich Coatings

摘    要
利用多巴胺(DA)对氧化石墨烯(GO)进行还原与改性得到DA-rGO纳米复合材料并添加到环氧富锌涂料中,制备了一种新型的DA-rGO/环氧富锌防腐蚀涂层。通过傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)等对DA-rGO纳米复合材料进行了表征,并对涂层的耐冲击性、硬度、附着力等物理性能,电化学性能和耐盐雾腐蚀性能进行了测试。结果表明:当DA-rGO的添加量为1%时,涂层的耐冲击性、硬度等物理性能达到最佳,且此时涂层具有最低的腐蚀电流密度与最高的腐蚀电位,防腐蚀效果最好。
标    签 多巴胺   氧化石墨烯   物理性能   防腐蚀性能   dopamine   graphene oxide   physical property   corrosion resistance  
 
Abstract
DA-rGO nano composites were obtained by the reduction and modification of graphene oxide (GO) with dopamine (DA), and were added into epoxy zinc-rich coating to prepare a new DA-rGO/epoxy zinc-rich anticorrosive coating. The DA-rGO nano composites were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The physical properties including impact resistance, hardness, adhesion of the coating as well as it electrochemical properties and salt-spray corrosion resistance were tested. The test results show that when the dosage of DA-rGO was 1%, the impact resistance, hardness and other physical properties of the coating reached the best, meanwhile the coating had the lowest corrosion current density and the highest corrosion potential, showing best corrosion resistance.

中图分类号 TG174   DOI 10.11973/fsyfh-202208001

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金(5117605);江苏省重点实验室开放基金(312035);常州市科技计划(CE20160069);常州市应用基础研究(CJ20200085)

收稿日期 2020/10/14

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHAO Shuhua,CUI Jiawei,DUAN Yunfei,WANG Shuli,ZHU Jiankang,RAO Yongchao. Effect of Dopamine Modified GO on Properties of Epoxy Zinc-Rich Coatings[J]. Corrosion & Protection, 2022, 43(8): 1


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】赵书华,陈玉,王树立,等.石墨烯防腐涂料研究进展 .常州大学学报(自然科学版),2017,29(2):23-28.
 
【2】LI W J,FAN Z B,LI X G,et al.Improved anti-corrosion performance of epoxy zinc rich coating on rusted steel surface with aluminum triphosphate as rust converter .Progress in Organic Coatings,2019,135:483-489.
 
【3】JALILI M,ROSTAMI M,RAMEZANZADEH B.An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle .Applied Surface Science,2015,328:95-108.
 
【4】GERGELY A,PFEIFER É,BERTÓTI I,et al.Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole .Corrosion Science,2011,53(11):3486-3499.
 
【5】SHAO Y W,JIA C,MENG G Z,et al.The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel .Corrosion Science,2009,51(2):371-379.
 
【6】SHREEPATHI S,BAJAJ P,MALLIK B P.Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings:role of Zn content on corrosion protection mechanism .Electrochimica Acta,2010,55(18):5129-5134.
 
【7】YANG F,LIU T,LI J Y,et al.Anticorrosive behavior of a zinc-rich epoxy coating containing sulfonated polyaniline in 3.5% NaCl solution .RSC Advances,2018,8(24):13237-13247.
 
【8】MARCHEBOIS H,TOUZAIN S,JOIRET S,et al.Zinc-rich powder coatings corrosion in sea water:influence of conductive pigments .Progress in Organic Coatings,2002,45(4):415-421.
 
【9】ZHOU S G,WU Y M,ZHAO W J,et al.Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate .Materials & Design,2019,169:107694.
 
【10】LI W B,SHANG T H,YANG W G,et al.Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding .ACS Applied Materials & Interfaces,2016,8(20):13037-13050.
 
【11】RAMEZANZADEH B,NIROUMANDRAD S,AHMADI A,et al.Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide .Corrosion Science,2016,103:283-304.
 
【12】RICHARD PRABAKAR S J,HWANG Y H,BAE E G,et al.Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries .Carbon,2013,52:128-136.
 
【13】朱建康,王树立,饶永超,等.多巴胺改性氧化石墨烯-TiO2纳米复合材料在水性环氧树脂中物理性能和腐蚀动力学研究 .涂料工业,2019,49(8):1-9,16.
 
【14】HAYATDAVOUDI H,RAHSEPAR M.A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate .Journal of Alloys and Compounds,2017,727:1148-1156.
 
【15】赵书华,陈宏,王树立,等.石墨烯对硅酸盐富锌防腐蚀涂层性能的影响 .腐蚀与防护,2018,39(12):930-935,940.
 
【16】石双群,宋新芳.多巴胺的自氧化作用 .河北师范大学学报(自然科学版),1997,21(4):387-390.
 
【17】CHEN K P,TIAN Q,TIAN C R,et al.Mechanical reinforcement in thermoplastic polyurethane nanocomposite incorporated with polydopamine functionalized graphene nanoplatelet .Industrial & Engineering Chemistry Research,2017,56(41):11827-11838.
 
【18】WU J J,ZHANG L,WANG Y X,et al.Mussel-inspired chemistry for robust and surface-modifiable multilayer films .Langmuir:the ACS Journal of Surfaces and Colloids,2011,27(22):13684-13691.
 
【19】ISLAM M S,AKTER N,RAHMAN M M,et al.Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper .ACS Sustainable Chemistry & Engineering,2018,6(7):9178-9188.
 
【20】NING N Y,MA Q,LIU S T,et al.Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide .ACS Applied Materials & Interfaces,2015,7(20):10755-10762.
 
【21】XU L Q,YANG W J,NEOH K G,et al.Dopamine-induced reduction and functionalization of graphene oxide nanosheets .Macromolecules,2010,43(20):8336-8339.
 
【22】KAMINSKA I,DAS M R,COFFINIER Y,et al.Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step .ACS Applied Materials & Interfaces,2012,4(2):1016-1020.
 
【23】HAN X F,ZHANG L,LI C Z.Preparation of polydopamine-functionalized graphene-Fe3O4 magnetic composites with high adsorption capacities .RSC Adv,2014,4(58):30536-30541.
 
【24】WEI Y,HU X Y,JIANG Q R,et al.Influence of graphene oxide with different oxidation levels on the properties of epoxy composites .Composites Science and Technology,2018,161:74-84.
 
【25】TENG S,GAO Y,CAO F L,et al.Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings .Progress in Organic Coatings,2018,123:185-189.
 
【26】SUN W,WANG L D,WU T T,et al.Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection .Carbon,2014,79:605-614.
 
相关信息
   标题 相关频次
 无机纳米粒子改性石墨烯基复合涂层的研究现状
 10
 海泡石在环氧树脂复合涂层中的研究进展
 7
 石墨烯添加方法对环氧涂料防腐蚀性能的影响
 7
 N80钢在含沙和含Cl-溶液中的冲刷腐蚀行为
 4
 石墨烯对硅酸盐富锌防腐蚀涂层性能的影响
 4
 套管对埋地金属管道阴极保护电位影响的数值模拟
 4
 涂层下金属管道缝隙腐蚀瞬态的数值模拟
 4
 氧化石墨烯-连续鸟嘌呤碱基DNA复合膜修饰电极用于测定多巴胺
 4
 石墨烯在镁合金表面防护技术中的研究进展
 3
 2,3-二巯基丁二酸修饰金电极伏安法同时测定肾上腺素及多巴胺
 2
 Al2O3/Cu复合材料的研究进展
 2
 G-O/P(MMA-co-BA)共聚物复合薄膜表面三维角锥棱镜结构的卷对卷热辊压成形
 2
 NaCl对Q235钢早期腐蚀行为的影响
 2
 百草枯在氧化石墨烯修饰玻碳电极上的电化学行为及其差分脉冲伏安测定
 2
 不同比表面积石墨烯对水性环氧富锌防腐蚀涂层性能的影响
 2
 不粘锅产品的质量分析
 2
 长输埋地管道阴极保护故障诊断与排除
 2
 单壁碳纳米管Nafion复合膜修饰玻碳电极用于示差脉冲伏安法测定多巴胺
 2
 氮掺杂石墨烯与发夹DNA修饰的电极为工作电极-差分脉冲伏安法用于测定多巴胺
 2
 镀锌板新型环保钝化层的结构和耐蚀性能
 2
 多巴胺在镍(Ⅱ)与水杨醛谷氨酸配合物修饰的碳黑微电极上的电化学行为
 2
 二乙腈基二硫纶自组装膜修饰金电极对多巴胺的电化学催化作用
 2
 高耐蚀GO/PANI涂层的防腐蚀性能及机理
 2
 高压下光电材料结构相变及物理性能的研究进展
 2
 含砂NaCl水溶液中流速对N80钢冲刷腐蚀行为的影响
 2
 火焰原子吸收光谱法测定氧化石墨烯中铁和钾的含量
 2
 极化作用对X70钢在NaCl溶液中腐蚀行为的影响
 2
 间氨基苯酚修饰玻碳电极测定多巴胺
 2
 介孔碳/纳米金修饰电极同时测定多巴胺、抗坏血酸和尿酸
 2
 金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺
 2