搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
耐热钢应变诱导析出模型及其应用研究进展
          
Research Progress on Strain Induced Precipitation Model and Its Application of Heat Resistant Steel

摘    要
耐热钢是火电、核电、化工等领域中服役于高温条件下的关键材料,在服役过程中析出相的存在对耐热钢热强性、韧性、组织稳定性及抗高温氧化性等具有重要影响,而应变使基体中产生大量位错,对于析出相形核有促进作用。对耐热钢的主要合金元素和析出相进行了介绍,从应变诱导形核、应变诱导析出相长大和粗化、应变诱导析出模型的工程应用3个方面对耐热钢应变诱导析出模型的研究进展进行了综述,并对应变诱导析出模型的未来研究方向进行了展望。
标    签 耐热钢   应变诱导析出模型   析出相   形核   长大和粗化   heat resistant steel   strain induced precipitation model   precipitate   nucleation   growth and coarsening  
 
Abstract
Heat resistant steels are a key material serving in thermal power, nuclear power and chemical industry fields under high temperature conditions. The existence of precipitates during service has an important influence on the thermal strength, toughness, microstructure stability and high temperature oxidation resistance of heat resistant steels, and the strain causes a large number of dislocations in the matrix, which promotes the nucleation of precipitates. The main alloying elements and precipitates of heat resistant steels are introduced, and the research progress on strain induced precipitation model for heat resistant steels is reviewed from three aspects: strain induced nucleation, strain induced precipitation growth and coarsening, and the engineering application of strain induced precipitation model. The future research direction of the strain induced precipitation model is prospected.

中图分类号 TG142.73   DOI 10.11973/jxgccl202209001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(U1610256,U51901035)

收稿日期 2021/4/6

修改稿日期 2022/5/12

网络出版日期

作者单位点击查看

联系人作者赵杰教授

备注姜丙亚(1996-),男,内蒙古呼和浩特人,硕士研究生

引用该论文: JIANG Bingya,CAO Tieshan,CHENG Congqian,ZHAO Jie. Research Progress on Strain Induced Precipitation Model and Its Application of Heat Resistant Steel[J]. Materials for mechancial engineering, 2022, 46(9): 1~10
姜丙亚,曹铁山,程从前,赵杰. 耐热钢应变诱导析出模型及其应用研究进展[J]. 机械工程材料, 2022, 46(9): 1~10


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】谢锡善.我国高温材料的应用与发展[J].机械工程材料,2004,28(1):2-8. XIE X S.The development and application of high temperature materials in China[J].Materials for Mechanical Engineering,2004,28(1):2-8.
 
【2】林富生,王治政,王宝忠,等.中国电站用耐热钢及合金的研制、应用与发展[J].动力工程学报,2010,30(4):235-244. LIN F S,WANG Z Z,WANG B Z,et al.Research,application and development of domestic heat-resistant steels and alloys for power plants[J].Journal of Chinese Society of Power Engineering,2010,30(4):235-244.
 
【3】胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003,15(3):60-65. HU Z F,YANG Z G.Development and application of high chromium heat-resistant steel[J].Journal of Iron and Steel Research,2003,15(3):60-65.
 
【4】WÄRNER H,CALMUNGER M,CHAI G C,et al.Fracture and damage behavior in an advanced heat resistant austenitic stainless steel during LCF,TMF and CF[J].Procedia Structural Integrity,2018,13:843-848.
 
【5】ZHANG Y B,ZOU D N,WEI T Y,et al.Microstructural evolution and precipitation behavior of the 0.1C-18Cr-1Al-1Si ferritic heat-resistant stainless steel during hot deformation[J].Materials Research Express,2020,7(3):036513.
 
【6】WILSHIRE B,WILLIS M.Mechanisms of strain accumulation and damage development during creep of prestrained 316 stainless steels[J].Metallurgical and Materials Transactions A,2004,35(2):563-571.
 
【7】GROT A S,SPRUIELL J E.Microstructural stability of titanium-modified type 316 and type 321 stainless steel[J].Metallurgical Transactions A,1975,6(11):2023-2030.
 
【8】HONG S M,KIM M Y,MIN D J,et al.Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 Austenite stainless steel[J].Materials Characterization,2014,94:7-13.
 
【9】QIAO S F,WEI Y H,XU H L,et al.The evolution behavior of second phases during long-term creep rupture process for modified 9Cr-1.5Mo-1Co steel welded joint[J].Materials Characterization,2019,151:318-331.
 
【10】许航,李玉平,方旭东,等.HR3C耐热钢在高温蠕变过程中微观组织演变分析[J].热加工工艺,2017,46(6):107-111. XU H,LI Y P,FANG X D,et al.Analysis on microstructure evolution of HR3C heat resistant steel during high-temperature creep test[J].Hot Working Technology,2017,46(6):107-111.
 
【11】于鸿垚,董建新,谢锡善.新型奥氏体耐热钢HR3C的研究进展[J].世界钢铁,2010,10(2):42-49. YU H Y,DONG J X,XIE X S.Research development of new austenitic heat-resistant steel HR3C[J].World Iron & Steel,2010,10(2):42-49.
 
【12】刘入维,肖平,钟犁,等.700 ℃超超临界燃煤发电技术研究现状[J].热力发电,2017,46(9):1-7. LIU R W,XIAO P,ZHONG L,et al.Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology[J].Thermal Power Generation,2017,46(9):1-7.
 
【13】XU Y T,LI W,WANG M J,et al.Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging[J].Acta Materialia,2019,175:148-159.
 
【14】CHEN G A,YANG W Y,GUO S Z,et al.Strain-induced precipitation of Nb(CN) during deformation of undercooled austenite in Nb-microalloyed HSLA steels[J].Materials Science Forum,2005,475/476/477/478/479:105-108.
 
【15】ZHOU Y H,LIU C X,LIU Y C,et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J].International Journal of Minerals,Metallurgy,and Materials,2016,23(3):283-293.
 
【16】迟成宇,于鸿垚,谢锡善.600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展[J].世界钢铁,2012,12(4):50-65. CHI C Y,YU H Y,XIE X S.Research and development of austenitic heat-resistant steels for 600 ℃ superheat/reheater tubes of USC power plant boilers[J].World Iron & Steel,2012,12(4):50-65.
 
【17】李太江,刘福广,范长信,等.超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J].热加工工艺,2010,39(14):43-46. LI T J,LIU F G,FAN C X,et al.Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J].Hot Working Technology,2010,39(14):43-46.
 
【18】WANG J Z,LIU Z D,BAO H S,et al.Evolution of precipitates of S31042 heat resistant steel during 700 ℃ aging[J].Journal of Iron and Steel Research,International,2013,20(10):113-121.
 
【19】WANG W,WANG Z W,LI W S,et al.Evolution of M23C6 phase in HR3C steel aged at 650 ℃[J].Materials at High Temperatures,2016,33(3):276-282.
 
【20】方园园,赵杰,李晓娜.HR3C钢高温时效过程中的析出相[J].金属学报,2010,46(7):844-849. FANG Y Y,ZHAO J,LI X N.Precipitates in HR3C steel aged at high temperature[J].Acta Metallurgica Sinica,2010,46(7):844-849.
 
【21】KAIBYSHEV R O,SKOROBOGATYKH V N,SHCHENKOVA I A.Formation of the Z-phase and prospects of martensitic steels with 11% Cr for operation above 590 ℃[J].Metal Science and Heat Treatment,2010,52(3/4):90-99.
 
【22】FEDOSEEVA A,DUDOVA N,KAIBYSHEV R.Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel[J].Materials Science and Engineering:A,2016,654:1-12.
 
【23】FEDOSEEVA A,DUDOVA N,KAIBYSHEV R.Effect of tungsten on a dispersion of M(C,N) carbonitrides in 9% Cr steels under creep conditions[J].Transactions of the Indian Institute of Metals,2016,69(2):211-215.
 
【24】邢佳,卫英慧,侯利锋,等.HR3C不锈钢时效过程中铌的析出规律及其对性能的影响[J].钢铁研究学报,2014,26(12):54-59. XING J,WEI Y H,HOU L F,et al.Rule for niobium precipitation during aging treatment and its influence on properties of stainless steel HR3C[J].Journal of Iron and Steel Research,2014,26(12):54-59.
 
【25】ZHOU Y H,LI Y M,LIU Y C,et al.Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging[J].Journal of Materials Research,2015,30(23):3642-3652.
 
【26】谢奇迈,马庆爽,张海莲,等.新型含铝奥氏体耐热钢中合金元素作用机制研究现状[J].中国冶金,2022,32(7):1-11. XIE Q M,MA Q S,ZHANG H L,et al.Research status of elements alloying mechanism in heat-resistant austenitic steel containing aluminum[J].China Metallurgy,2022,32(7):1-11.
 
【27】闫超鹏,孙锋,单爱党,等.超超临界火电机组用铁素体耐热钢的研究现状[J].机械工程材料,2008,32(12):1-4. YAN C P,SUN F,SHAN A D,et al.Research progress of ferritic heat-resistant steels used for ultra-super critical steam turbine units[J].Materials for Mechanical Engineering,2008,32(12):1-4.
 
【28】李慧,方旭东,徐芳泓,等.典型奥氏体耐热钢的析出行为研究[J].热加工工艺,2020,49(14):6-10. LI H,FANG X D,XU F H,et al.Study on precipitation behavior of typical austenitic heat resistant steels[J].Hot Working Technology,2020,49(14):6-10.
 
【29】ZHOU Y H,LIU Y C,ZHOU X S,et al.Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J].Journal of Materials Research,2015,30(13):2090-2100.
 
【30】王锐,曹铁山,赵杰.冷变形对Sanicro 25钢时效过程中组织和性能的影响[J].金属热处理,2019,44(增刊1):575-580. WANG R,CAO T S,ZHAO J.Effect of cold deformation on microstructure and properties of Sanicro 25 steel during aging[J].Heat Treatment of Metals,2019,44(S1):575-580.
 
【31】GÓMEZ-RAMÍREZ R,POUND G M.Nucleation of a second solid phase along dislocations[J].Metallurgical Transactions,1973,4(6):1563-1570.
 
【32】CAHN J W.Nucleation on dislocations[J].Acta Metallurgica,1957,5(3):169-172.
 
【33】LIU W J,JONAS J J.Characterisation of critical nucleus/matrix interface:Application to Cu-Co alloys and microalloyed austenite[J].Materials Science and Technology,1989,5(1):8-12.
 
【34】DUTTA B,VALDES E,SELLARS C M.Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite[J].Acta Metallurgica et Materialia,1992,40(4):653-662.
 
【35】RUSSELL K C.Nucleation in solids:The induction and steady state effects[J].Advances in Colloid and Interface Science,1980,13(3/4):205-318.
 
【36】ZUROB H S,HUTCHINSON C R,BRECHET Y,et al.Modeling recrystallization of microalloyed austenite:Effect of coupling recovery,precipitation and recrystallization[J].Acta Materialia,2002,50(12):3077-3094.
 
【37】OKAGUCHI S,HASHIMOTO T.Computer model for prediction of carbonitride precipitation during hot working in Nb-Ti bearing HSLA steels[J].ISIJ International,1992,32(3):283-290.
 
【38】DUTTA B,SELLARS C M.Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite[J].Materials Science and Technology,1987,3(3):197-206.
 
【39】JUNG J G,PARK J S,KIM J,et al.Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel[J].Materials Science and Engineering:A,2011,528(16/17):5529-5535.
 
【40】MA X P,MIAO C L,LANGELIER B,et al.Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel[J].Materials & Design,2017,132:244-249.
 
【41】ZUROB H.Effects of precipitation ,recovery and recrystallization on the microstructural evolution of microalloyed austenite [D].Hamilton: McMaster University,2003.
 
【42】吴志方,刘超.二元互不溶体系中第二相颗粒的Ostwald熟化[J].材料导报,2016,30(5):23-26. WU Z F,LIU C.Ostwald ripening of secondary phase particles in binary immiscible systems[J].Materials Review,2016,30(5):23-26.
 
【43】BALDAN A.Progress in Ostwald ripening theories and their applications in nickel-base super alloys[J].Journal of Materials Science,2002,37:2379-2405.
 
【44】LIU B,ZENG H C.Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J].Small,2005,1(5):566-571.
 
【45】LIFSHITZ I M,SLYOZOV V V.The kinetics of precipitation from supersaturated solid solutions[J].Journal of Physics and Chemistry of Solids,1961,19(1/2):35-50.
 
【46】DESCHAMPS A,BRECHET Y.Influence of predeformation and ageing of an Al-Zn-Mg alloy: II.Modeling of precipitation kinetics and yield stress[J].Acta Materialia,1998,47(1):293-305.
 
【47】LIU W J.A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite[J].Metallurgical and Materials Transactions A,1995,26(7):1641-1657.
 
【48】DUTTA B,PALMIERE E J,SELLARS C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J].Acta Materialia,2001,49(5):785-794.
 
【49】ZENER C.Theory of growth of spherical precipitates from solid solution[J].Journal of Applied Physics,1949,20(10):950-953.
 
【50】张盼盼,程晓农,罗锐,等.新型Fe-Cr-Ni耐热合金的应变诱导析出行为[J].钢铁研究学报,2019,31(1):64-71. ZHANG P P,CHENG X N,LUO R,et al.Strain-induced precipitation behavior of new Fe-Cr-Ni heat-resistant alloy[J].Journal of Iron and Steel Research,2019,31(1):64-71.
 
【51】MASUDA T,HIROSAWA S,HORITA Z,et al.Experimental and computational studies of competitive precipitation behavior observed in microstructures with high dislocation density and ultra-fine grains[J].Materials Science Forum,2012,706/707/708/709:1787-1792.
 
【52】RADIS R,KOZESCHNIK E.Numerical simulation of NbC precipitation in microalloyed steel[J].Modelling and Simulation in Materials Science and Engineering,2012,20(5):055010.
 
【53】ZHANG Y Y,JIN W,HAO X Z,et al.Improving elevated-temperature strength of an Al-Mn-Si alloy by strain-induced precipitation[J].Metals,2018,8(6):446.
 
【54】CHEN S P,KUIJPERS N C W,VAN DER ZWAAG S.Effect of microsegregation and dislocations on the nucleation kinetics of precipitation in aluminium alloy AA3003[J].Materials Science and Engineering:A,2003,341(1/2):296-306.
 
【55】KANG K B,KWON O,LEE W B,et al.Effect of precipitation on the recrystallization behavior of a Nb containing steel[J].Scripta Materialia,1997,36(11):1303-1308.
 
【56】YANG Y,LI T R,JIA T,et al.Precipitation kinetics of complex precipitate in multicomponent systems[J].Journal of Iron and Steel Research International,2018,25(10):1086-1093.
 
【57】LLANOS L,PEREDA B,PAUL G,et al.Physical modelling of the interaction between softening and Nb (C,N) strain-induced precipitation in high-Mn steels[J].Materials Science Forum,2013,762:398-404.
 
【58】LIANG S L,WANG X,ZUROB H S.NbC precipitation during multi-pass deformation of a nickel-based model alloy:Experiments and modelling[J].Materials Science and Engineering:A,2020,772:138748.
 
相关信息
   标题 相关频次
 基于参数Zc预测25Cr35Ni耐热钢的蠕变行为与持久寿命
 7
 晶粒形态对HR3C耐热不锈钢时效脆性的影响
 7
 DZ411定向凝固镍基合金蠕变性能的快速评估方法
 6
 TG700A镍基合金在持久过程中的晶界析出相转变及断裂行为
 6
 钝化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法
 6
 基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真
 6
 铌含量对HR3C钢在高温时效过程中显微组织演变的影响
 6
 几种耐热钢在超(超)临界水中抗氧化性能的比较
 5
 某循环流化床锅炉TP347H钢再热器管的开裂原因
 4
 汽车方向盘骨架断裂原因分析
 4
 AlCrFeNi多主元高熵合金的高温性能
 3
 采用不同方法预测10Cr9MoW2VNbBN钢蠕变曲线的比较
 3
 低稳恒磁场对锡锌基合金液与铜片界面反应的影响
 3
 电位扫描速率对测试304不锈钢腐蚀行为的影响
 3
 海水泵叶轮316L不锈钢螺钉的腐蚀原因分析
 3
 核电用奥氏体不锈钢表面铁素体污染的影响及对策
 3
 流动对316L/2205和431/2205不锈钢在3.5% NaCl溶液中电偶腐蚀的影响
 3
 强磁场对Sn-4Cu合金凝固过程中Cu6Sn5相的影响
 3
 显色法检测表征304不锈钢的疲劳损伤过程
 3
 真空热处理对冷喷涂304不锈钢涂层组织与性能的影响
 3
 20Cr2Ni4钢制打击罩硬度异常分析
 2
 2205双相钢临界点蚀温度测量方法的比较
 2
 630 ℃长时时效对G112钢组织和力学性能的影响
 2
 700 ℃服役8 万h后析出大量σ相AISI 321不锈钢的再利用
 2
 9Cr2Mo钢中贝氏体的组织形貌
 2
 CVD金刚石的形核和生长
 2
 N18锆合金的疖状腐蚀
 2
 ZG1Cr10MoWVNbN耐热钢平衡析出相的热力学计算及分析
 2
 奥氏体不锈钢应力腐蚀微裂纹的非线性表面波检测
 2
 不同工艺热处理后超高强Cu-15Ni-8Sn-Zn-0.8Al-0.2Si合金的腐蚀行为
 2