搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Ti-10V-2Cr-3Al钛合金的高温压缩变形行为及本构关系
          
High Temperature Compression Deformation Behavior and Constitutive Relationship of Ti-10V-2Cr-3Al Titanium Alloy

摘    要
在应变速率0.1~0.001 s-1、变形温度730~880℃下对Ti-10V-2Cr-3Al钛合金进行热压缩试验,研究了该合金的热变形行为和显微组织;利用唯象Arrhenius方程中指数方程及双曲正弦方程描述流动应力与变形温度、应变速率之间的关系,构建了应变补偿修正的本构方程并进行了验证。结果表明:在试验条件下合金的真应力随着应变速率的增加或变形温度的降低而增大;当应变速率为0.01 s-1时,在α+β相区(730,790℃)压缩后试验合金中出现球状和短棒状α相,软化机制为动态球化和动态再结晶,在β相区(820,880℃)压缩后出现再结晶β晶粒,软化机制为动态再结晶;当应变速率在0.1~0.05 s-1和0.01~0.001 s-1范围时,可分别使用修正后的指数方程和双曲正弦方程来描述试验合金的流变行为,流动应力预测值与试验值的平均相对误差为5.36%,这说明修正后的方程具有良好的预测能力。
标    签 流动应力   Ti-10V-2Cr-3Al钛合金   本构关系   显微组织   flow stress   Ti-10V-2Cr-3Al titanium alloy   constitutive relationship   microstructure  
 
Abstract
Hot compression tests were carried out on Ti-10V-2Cr-3Al titanium alloy at the strain rate of 0.1-0.001 s-1 and deformation temperature of 730-880 ℃, and the hot deformation behavior and microstructure of the alloy were studied. The exponential equation and hyperbolic sine equation in the phenomenological Arrhenius equation were used to describe the relationship between flow stresses and deformation temperatures and strain rates. The constitutive equation corrected by strain compensation was established and verified. The results show that the true stress of the alloy increased with increasing strain rate or decreasing deformation temperature under test conditions. At the strain rate of 0.01 s-1, spherical and short rod-like α phases appeared in the test alloy after compression in the α+β phase region (730, 790 ℃), and the softening mechanism was dynamic spheroidization and dynamic recrystallization; recrystallized β grains appeared after compression in the β phase region (820, 880 ℃), and the softening mechanism was dynamic recrystallization. When the strain rate was in the range of 0.1-0.05 s-1 and 0.01-0.001 s-1, the flow behavior of the test alloy could be described by the corrected exponential equation and the corrected hyperbolic sine equation, respectively. The average relative error between the predicted flow stresses and the experimental flow stresses was 5.36%, indicating that the corrected equations had good predictive ability.

中图分类号 TG15   DOI 10.11973/jxgccl202209016

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51775055,51975061);湖南省教育厅优秀青年基金资助项目(19B033)

收稿日期 2021/7/1

修改稿日期 2022/7/5

网络出版日期

作者单位点击查看

备注李聪(1985-),男,湖南长沙人,教授,博士

引用该论文: LI Cong,DING Zhili,CHEN Jian,ZHOU Xing. High Temperature Compression Deformation Behavior and Constitutive Relationship of Ti-10V-2Cr-3Al Titanium Alloy[J]. Materials for mechancial engineering, 2022, 46(9): 96~105
李聪,丁智力,陈荐,周幸. Ti-10V-2Cr-3Al钛合金的高温压缩变形行为及本构关系[J]. 机械工程材料, 2022, 46(9): 96~105


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】M'SAOUBI R,AXINTE D,SOO S L,et al.High performance cutting of advanced aerospace alloys and composite materials[J].CIRP Annals,2015,64(2):557-580.
 
【2】LIANG X L,LIU Z Q,WANG B.State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys:A review[J].Measurement,2019,132:150-181.
 
【3】LI C,QIN L K,LI M,et al.Influence of deformation strain rate on the mechanical response in a metastable β titanium alloy with various microstructures[J].Journal of Alloys and Compounds,2020,815:152426.
 
【4】LI C,WU X,CHEN J H,et al.Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti-10V-2Fe-3Al[J].Materials Science and Engineering:A,2011,528(18):5854-5860.
 
【5】DEHGHAN-MANSHADI A,DIPPENAAR R J.Strain-induced phase transformation during thermo-mechanical processing of titanium alloys[J].Materials Science and Engineering:A,2012,552:451-456.
 
【6】WANG K X,ZENG W D,ZHAO Y Q,et al.Dynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructure[J].Materials Science and Engineering:A,2010,527(10/11):2559-2566.
 
【7】GUPTA A,KHATIRKAR R K,KUMAR A,et al.Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy-Possible role of strain path[J].Materials Characterization,2019,156:109884.
 
【8】JHA J S,TOPPO S P,SINGH R,et al.Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V[J].Journal of Materials Processing Technology,2019,270:216-227.
 
【9】ROY S,SUWAS S.The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B[J].Journal of Alloys and Compounds,2013,548:110-125.
 
【10】MURTHY K K,SEKHAR N C,SUNDARESAN S.Thermomechanical processing of welded α+β Ti-Al-Mn alloy and its effect on microstructure and mechanical properties[J].Materials Science and Technology,1997,13(4):343-348.
 
【11】SAGAR P K,BANERJEE D,MURALEEDHARAN K,et al.High-temperature deformation processing of Ti-24Al-20Nb[J].Metallurgical and Materials Transactions A,1996,27(9):2593-2604.
 
【12】WANG K X,ZENG W D,ZHAO Y Q,et al.Flow behaviour and microstructural evolution of Ti-17 alloy with lamellar microstructure during hot deformation in α+β phase field[J].Materials Science and Technology,2011,27(1):21-28.
 
【13】HE D,ZHU J C,LAI Z H,et al.An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy[J].Materials & Design,2013,46:38-48.
 
【14】JIA W J,ZENG W D,ZHOU Y G,et al.High-temperature deformation behavior of Ti60 titanium alloy[J].Materials Science and Engineering:A,2011,528(12):4068-4074.
 
【15】SHEIKHALI A H,MORAKKABATI M,ABBASI S M.Constitutive modeling for hot working behavior of SP-700 titanium alloy[J].Journal of Materials Engineering and Performance,2019,28(10):6525-6537.
 
【16】YANG X M,GUO H Z,LIANG H Q,et al.Flow behavior and constitutive equation of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si titanium alloy[J].Journal of Materials Engineering and Performance,2016,25(4):1347-1359.
 
【17】JIA B H,SONG W D,TANG H P,et al.Hot deformation behavior and constitutive model of TC18 alloy during compression[J].Rare Metals,2014,33(4):383-389.
 
【18】QUAN G Z,LV W Q,LIANG J T,et al.Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti-10V-2Fe-3Al alloy in a wide condition range[J].Journal of Materials Processing Technology,2015,221:66-79.
 
【19】LI J L,WANG B Y,HUANG H,et al.Unified modelling of the flow behaviour and softening mechanism of a TC6 titanium alloy during hot deformation[J].Journal of Alloys and Compounds,2018,748:1031-1043.
 
【20】LI C,DING Z L,VAN DER ZWAAG S.The modeling of the flow behavior below and above the two-phase region for two newly developed meta-stable β titanium alloys[J].Advanced Engineering Materials,2021,23(1):1901552.
 
【21】WANJARA P,JAHAZI M,MONAJATI H,et al.Hot working behavior of near-α alloy IMI834[J].Materials Science and Engineering:A,2005,396(1/2):50-60.
 
【22】SHEIKHALI A H,MORAKKABATI M,ABBASI S M,et al.Superplasticity of coarse-grained Ti-13V-11Cr-3Al alloy[J].International Journal of Materials Research,2013,104(11):1122-1127.
 
【23】PHILIPPART I,RACK H J.High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al[J].Materials Science and Engineering:A,1998,243(1/2):196-200.
 
【24】LIANG X L,LIU Z Q,WANG B.Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations[J].Applied Surface Science,2020,530:147184.
 
【25】LIU D,LIU D X,ZHANG X H,et al.Microstructural evolution mechanisms in rolled 17-4PH steel processed by ultrasonic surface rolling process[J].Materials Science and Engineering:A,2020,773:138720.
 
【26】MCQUEEN H J,RYAN N D.Constitutive analysis in hot working[J].Materials Science and Engineering:A,2002,322(1/2):43-63.
 
【27】GUO L G,FAN X G,YU G F,et al.Microstructure control techniques in primary hot working of titanium alloy bars:A review[J].Chinese Journal of Aeronautics,2016,29(1):30-40.
 
【28】PENG X N,GUO H Z,SHI Z F,et al.Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map[J].Materials Science and Engineering:A,2014,605:80-88.
 
【29】SUNG J H,KIM J H,WAGONER R H.A plastic constitutive equation incorporating strain,strain-rate,and temperature[J].International Journal of Plasticity,2010,26(12):1746-1771.
 
【30】LI C M, HUANG L, LI C L, et al. Research progress on hot deformation behavior of high-strength β titanium alloy: Flow behavior and constitutive model[J]. Rare Metals, 2022, 41:1434-1455.
 
【31】LUO J,LI M Q,YU W X,et al.The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy[J].Materials & Design,2010,31(2):741-748.
 
【32】LANGDON T G.Identifiying creep mechanisms at low stresses[J].Materials Science and Engineering:A,2000,283(1/2):266-273.
 
相关信息
   标题 相关频次
 不同工艺高温固溶与时效处理后SP-700钛合金的组织与性能
 8
 开孔泡沫铜的压-压疲劳行为
 4
 颗粒粒径对喷射沉积制备SiC颗粒增强铝硅合金复合材料显微组织及拉伸性能的影响
 4
 40CrNiMo钢的热变形特征及变形抗力模型
 3
 TC1钛合金的高温流变行为
 3
 难变形镍基高温合金GH710的高温变形特性
 3
 显微组织对超低碳X80管线钢氢致开裂行为的影响
 3
 选区激光熔化成形工艺对多孔TC4钛合金显微组织的影响
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1000-3738(2007)02-0009-04
 2
 102钢的显微组织形态与室温力学性能的关系
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢管在长时服役后组织及拉伸性能的退化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 13MnNiMoNbR与00Cr19Ni10异种钢焊接接头的组织与性能
 2
 15CrMo钢和12Cr1MoV钢的快速金相制样方法
 2
 16MND5/309L/308L/Z2CND18-12N异种金属焊接件的组织和性能
 2
 16Mn钢链板断裂分析
 2
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 2
 1Cr17不锈钢表面TIG冷焊重熔和丝材熔敷工艺及改性层的组织和性能
 2
 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能
 2
 2024铝合金电子束焊接接头的显微组织与力学性能
 2
 20Cr1Mo1VTiB钢的连续冷却转变行为
 2
 20CrMnTi齿轮钢棒材控轧控冷工艺的优化
 2
 20MnCr5钢齿轮表面渗碳层的显微组织
 2
 220 kV断路器用弹簧异常开裂失效分析
 2
 2205双相不锈钢电解腐蚀新方法
 2
 22MnB5钢三种热冲压成形件的冷弯性能
 2