搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
光催化脱硝材料的研究进展
          
Research Progress of Photocatalytic Materials for Denitrification

摘    要
减少NOx排放是最关键的全球环境问题之一,目前传统的脱硝技术普遍存在反应温度高、催化效率低和成本高等问题,因此光催化氧化、光选择性催化还原等新型光催化脱除NOx技术受到了极大关注。从光催化氧化法和光选择性催化还原法2个方面综述了光催化材料在脱除NOx方面的研究进展,重点介绍了光催化材料的类型、脱除原理和影响脱除效率的因素,并对光催化脱硝材料的今后研究方向进行了展望。
标    签 光催化材料   NOx   脱硝效率   光催化氧化   光选择性催化还原   photocatalytic material   NOx   catalytic efficiency   photocatalytic oxidation   photocatalytic selective reduction  
 
Abstract
Reducing NOx emission is one of the most critical global environmental problems. At present, the traditional denitrification technology generally has the problems of high reaction temperature, low catalytic efficiency and high cost. Therefore, new photocatalytic NOx removal technologies such as photocatalytic oxidation and photocatalytic selective reduction have attracted great attention. The research progress in NOx removal by photocatalytic materials is reviewed from two aspects including photocatalytic oxidation and photocatalytic selective reduction. The types of photocatalytic materials, the removal principle and the factors affecting the removal efficiency are emphasized. Finally, the prospects for future development of photocatalytic materials used for denitrification are presented.

中图分类号 TB332   DOI 10.11973/jxgccl202210002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 江苏省自然科学基金资助项目(BK20180103,BK20180971);苏州市科技发展计划项目(SS202036)

收稿日期 2021/5/27

修改稿日期 2022/7/6

网络出版日期

作者单位点击查看

备注曹一达(1996-),男,江苏徐州人,硕士研究生

引用该论文: CAO Yida,LIU Chengbao,CHEN Feng,QIAN Junchao,XU Xiaojing,MENG Xianrong,CHEN Zhigang. Research Progress of Photocatalytic Materials for Denitrification[J]. Materials for mechancial engineering, 2022, 46(10): 8~14
曹一达,刘成宝,陈丰,钱君超,许小静,孟宪荣,陈志刚. 光催化脱硝材料的研究进展[J]. 机械工程材料, 2022, 46(10): 8~14


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】汤春妮, 樊君.光催化清除NOx的研究进展[J].化学与生物工程, 2016, 33(12):1-5. TANG C N, FAN J.Research progress on NOx removal by photocatalysis[J].Chemistry & Bioengineering, 2016, 33(12):1-5.
 
【2】王冬, 李硕, 杨硕, 等.工业脱硝技术应用现状及展望[J].化工科技, 2020, 28(2):77-82. WANG D, LI S, YANG S, et al.Current status and prospects of the application of industrial denitration technology[J].Science & Technology in Chemical Industry, 2020, 28(2):77-82.
 
【3】NGUYEN V H, NGUYEN B S, HUANG C W, et al.Photocatalytic NOx abatement:Recent advances and emerging trends in the development of photocatalysts[J].Journal of Cleaner Production, 2020, 270:121912.
 
【4】LASEK J, YU Y H, WU J C S.Removal of NOx by photocatalytic processes[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2013, 14:29-52.
 
【5】SHI Y, XIA Y F, LU B H, et al.Emission inventory and trends of NOx for China, 2000-2020[J].Journal of Zhejiang University Science A, 2014, 15(6):454-464.
 
【6】徐名凤, 施惠生, 吴凯.TiO2光催化水泥基材料去除氮氧化物研究进展[J].新型建筑材料, 2019, 46(5):46-49, 53. XU M F, SHI H S, WU K.Research development of photocatalytic NOx abatement by TiO2-cementitious composites[J].New Building Materials, 2019, 46(5):46-49, 53.
 
【7】黎宝仁.TiO2光催化处理氮氧化物技术及未来发展[J].资源节约与环保, 2017(7):2-3. LI B R.Technology and future development of TiO2 photocatalytic treatment of nitrogen oxides[J].Resources Economization & Environmental Protection, 2017(7):2-3.
 
【8】YIN W J, WEN B, ZHOU C Y, et al.Excess electrons in reduced rutile and anatase TiO2[J].Surface Science Reports, 2018, 73(2):58-82.
 
【9】王婧雅.钕掺杂TiO2纳米材料的制备及光催化性能研究[D].长春:吉林大学, 2020. WANG J Y.Preparation and photocatalytic performance research of neodymium-doped TiO2 nanomaterials[D].Changchun:Jilin University, 2020.
 
【10】LIU H, ZHANG H R, YANG H M.Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes-supported TiO2[J].Chinese Journal of Catalysis, 2014, 35(1):66-77.
 
【11】KUSIAK-NEJMAN E, CZY AZ` EWSKI A, WANAG A, et al.Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths[J].Journal of Environmental Management, 2020, 262:110343.
 
【12】张健伟, 苑鹏, 王建桥, 等.Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J].环境工程学报, 2020, 14(7):1852-1861. ZHANG J W, YUAN P, WANG J Q, et al.Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J].Chinese Journal of Environmental Engineering, 2020, 14(7):1852-1861.
 
【13】HERNÁNDEZ RODRÍGUEZ M J, MELIÁN E P, SANTIAGO D G, et al.NO photooxidation with TiO2 photocatalysts modified with gold and platinum[J].Applied Catalysis B:Environmental, 2017, 205:148-157.
 
【14】DUAN Y Y, ZHANG M, WANG L, et al.Plasmonic Aγ-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity:The role of oxygen vacancies[J].Applied Catalysis B:Environmental, 2017, 204:67-77.
 
【15】MARTINEZ-OVIEDO A, RAY S K, NGUYEN H P, et al.Efficient photo-oxidation of NOx by Sn doped blue TiO2 nanoparticles[J].Journal of Photochemistry and Photobiology A:Chemistry, 2019, 370:18-25.
 
【16】SHEN H Z, IE I R, YUAN C S, et al.The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures[J].Applied Catalysis B:Environmental, 2016, 195:90-103.
 
【17】FAN X, KANG S J, LI J.Plasma-enhanced hydrolysis of urea and SCR of NOx over V2O5-MoO3/TiO2:Decrease of reaction temperature and increase of NOx conversion[J].Fuel, 2020, 277:118155.
 
【18】ZHANG Y, FAN W, DU H Q, et al.Microstructure and photocatalytic property of TiO2 and Fe3+:TiO2 films produced by micro-arc oxidation[J].Surface and Coatings Technology, 2017, 315:196-204.
 
【19】陈官茂.Cu、Ce、B改性TiO2纳米管制备及光催化脱硝性能研究[D].哈尔滨:哈尔滨工程大学, 2015. CHEN G M.Preparation of Cu, Ce, B doped TiO2 nanotubes and research on their photocatalytic denitration performance[D].Harbin:Harbin Engineering University, 2015.
 
【20】SONG X, HU Y, ZHENG M M, et al.Solvent-free in situ synthesis of γ-C3N4/{00 1}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation[J].Applied Catalysis B:Environmental, 2016, 182:587-597.
 
【21】JABBARI V, HAMADANIAN M, KARIMZADEH S, et al.Enhanced charge carrier efficiency and solar light-induced photocatalytic activity of TiO2 nanoparticles through doping of silver nanoclusters and C-N-S nonmetals[J].Journal of Industrial and Engineering Chemistry, 2016, 35:132-139.
 
【22】WANG X C, MAEDA K, THOMAS A, et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials, 2009, 8(1):76-80.
 
【23】柳成荫.共热解法制备结构可调γ-C3N4及其光催化性能研究[D].北京:中国地质大学(北京), 2019. LIU C Y.Preparation and photocatalytic performance reasearch of structure-adjustable γ-C3N4 by co-pyrolysis method[D].Beijing:China University of Geosciences, 2019.
 
【24】WU X F, CHENG J S, LI X F, et al.Enhanced visible photocatalytic oxidation of NO by repeated calcination of γ-C3N4[J].Applied Surface Science, 2019, 465:1037-1046.
 
【25】HUANG H W, XIAO K, TIAN N, et al.Template-free precursor-surface-etching route to porous, thin γ-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J].Journal of Materials Chemistry A, 2017, 5(33):17452-17463.
 
【26】IRFAN M, SEVIM M, KOÇAK Y, et al.Enhanced photocatalytic NOx oxidation and storage under visible-light irradiation by anchoring Fe3O4 nanoparticles on mesoporous graphitic carbon nitride (mpγ-C3N4)[J].Applied Catalysis B:Environmental, 2019, 249:126-137.
 
【27】ZHAO L L, DONG G H, ZHANG L, et al.Photocatalytic nitrogen oxide removal activity improved step-by-step through serial multistep Cu modifications[J].ACS Applied Materials & Interfaces, 2019, 11(10):10042-10051.
 
【28】LI Y H, LV K L, HO W, et al.Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures[J].Chinese Journal of Catalysis, 2017, 38(2):321-329.
 
【29】CHEN P, DONG F, RAN M X, et al.Synergistic photo-thermal catalytic NO purification of MnOx/γ-C3N4:Enhanced performance and reaction mechanism[J].Chinese Journal of Catalysis, 2018, 39(4):619-629.
 
【30】LI Y H, HO W, LV K L, et al.Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over γ-C3N4 nanosheets[J].Applied Surface Science, 2018, 430:380-389.
 
【31】RAN M X, LI J R, CUI W, et al.Efficient and stable photocatalytic NO removal on C self-doped γ-C3N4:Electronic structure and reaction mechanism[J].Catalysis Science & Technology, 2018, 8(13):3387-3394.
 
【32】ZHANG W D, ZHAO Z W, DONG F, et al.Solvent-assisted synthesis of porous γ-C3N4 with efficient visible-light photocatalytic performance for NO removal[J].Chinese Journal of Catalysis, 2017, 38(2):372-378.
 
【33】LUO J M, DONG G H, ZHU Y Q, et al.Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in γ-C3N4[J].Applied Catalysis B:Environmental, 2017, 214:46-56.
 
【34】LI Y H, WU X F, HO W, et al.Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation[J].Chemical Engineering Journal, 2018, 336:200-210.
 
【35】XIE Y, YU S, ZHONG Y Q, et al.SnO2/graphene quantum dots composited photocatalyst for efficient nitric oxide oxidation under visible light[J].Applied Surface Science, 2018, 448:655-661.
 
【36】ZHU G Q, HOJAMBERDIEV M, ZHANG S L, et al.Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene[J].Applied Surface Science, 2019, 467/468:968-978.
 
【37】XIAO S N, PAN D L, LIANG R, et al.Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization[J].Applied Catalysis B:Environmental, 2018, 236:304-313.
 
【38】曾斌, 刘万锋, 曾武军.石墨烯负载有序介孔硫化锌纳米棒复合材料的制备及光催化性能[J].机械工程材料, 2018, 42(9):41-46. ZENG B, LIU W F, ZENG W J.Preparation and photocatalytic properties of ordered mesoporous ZnS nanorods loading on graphene composite[J].Materials for Mechanical Engineering, 2018, 42(9):41-46.
 
【39】LI M, HUANG H W, YU S X, et al.Facet, junction and electric field engineering of bismuth-based materials for photocatalysis[J].ChemCatChem, 2018, 10(20):4477-4496.
 
【40】OU M, WAN S P, ZHONG Q, et al.Hierarchical Z-scheme photocatalyst of γ-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance[J].Applied Catalysis B:Environmental, 2018, 221:97-107.
 
【41】闫欣.BiVO4/ASC光催化剂的制备及光催化脱硝性能研究[D].青岛:中国海洋大学, 2015. YAN X.Preparation and investigation of BiVO4 loaded on semi-coke and photocatalytic removal of NO[D].Qingdao:Ocean University of China, 2015.
 
【42】DING X, HO W, SHANG J, et al.Self doping promoted photocatalytic removal of no under visible light with Bi2MoO6:Indispensable role of superoxide ions[J].Applied Catalysis B:Environmental, 2016, 182:316-325.
 
【43】WAN J, DU X, WANG R M, et al.Mesoporous nanoplate multi-directional assembled Bi2WO6 for high efficient photocatalytic oxidation of NO[J].Chemosphere, 2018, 193:737-744.
 
【44】胡俊蝶.石墨相氮化碳、铋系纳米复合材料的制备及其光催化氧化氮氧化物的研究[D].苏州:苏州大学, 2019. HU J D.Fabrication of graphitic carbon nitride and Bi-based nanocomposites for their photocatalytic oxidation of nitrogen oxides[D].Suzhou:Soochow University, 2019.
 
【45】杨祥龙.含氧空位Bi2MO6(M=Mo, W)材料的设计合成及其光催化性能研究[D].武汉:华中农业大学, 2020. YANG X L.Oxygen-deficient Bi2MO6(M=Mo, W) materials:Design, fabrication and photocatalytic properties[D].Wuhan:Huazhong Agricultural University, 2020.
 
【46】YU S X, ZHANG Y H, DONG F, et al.Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3:Triple-functional role for efficient visible-light photocatalytic redox performance[J].Applied Catalysis B:Environmental, 2018, 226:441-450.
 
【47】XIONG T, WEN M Q, DONG F, et al.Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal[J].Applied Catalysis B:Environmental, 2016, 199:87-95.
 
【48】JIA Y F, LI S P, GAO J Z, et al.Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts:Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO[J].Applied Catalysis B:Environmental, 2019, 240:241-252.
 
【49】YANG B, LV K L, LI Q, et al.Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation[J].Applied Surface Science, 2019, 495:143561.
 
【50】钟秦.选择性非催化还原法脱除NOx的实验研究[J].南京理工大学学报, 2000, 24(1):68-71. ZHONG Q.NOx removal with selective non catalytic reduction[J].Journal of Nanjing University of Science and Technology, 2000, 24(1):68-71.
 
【51】张凯.氧化铈基材料的制备及其光催化脱硝性能研究[D].镇江:江苏大学, 2016. ZHANG K.Synthesis of ceria-based materials and its performance in photocatalytic removal of nitric oxide[D].Zhenjiang:Jiangsu University, 2016.
 
【52】魏强.氧化铈基材料的制备及光催化脱硝性能研究[D].镇江:江苏大学, 2017. WEI Q.Synthesis of ceria-based materials and its performance in photocatalytic removal of nitric oxide[D].Zhenjiang:Jiangsu University, 2017.
 
【53】陈志刚, 刘灿斌, 钱君超, 等.仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能[J].机械工程材料, 2016, 40(12):73-77. CHEN Z G, LIU C B, QIAN J C, et al.Selective catalysis reduction denitrification performance at low temperature of biomimicking CuO-CeO2 composite[J].Materials for Mechanical Engineering, 2016, 40(12):73-77.
 
【54】曾志超, 张宏图, 杜亚平.稀土钙钛矿纳米材料的可控合成进展[J].中国科学:化学, 2020, 50(11):1486-1503. ZENG Z C, ZHANG H T, DU Y P.Progress of controllable synthesis of rare-earth containing perovskite nano-materials[J].Scientia Sinica Chimica), 2020, 50(11):1486-1503.
 
【55】KANHERE P, CHEN Z.A review on visible light active perovskite-based photocatalysts[J].Molecules (Basel, Switzerland), 2014, 19(12):19995-20022.
 
【56】LI X Z, SHI H Y, ZHU W, et al.Nanocomposite LaFe1-xNixO3/Palygorskite catalyst for photo-assisted reduction of NOx:Effect of Ni doping[J].Applied Catalysis B:Environmental, 2018, 231:92-100.
 
【57】LI X Z, YAN X Y, LU X W, et al.Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst:Insight into the effect of graphene coupling[J].Journal of Catalysis, 2018, 357:59-68.
 
【58】LI X Z, SHI H Y, YAN X Y, et al.Palygorskite immobilized direct Z-scheme nitrogen-doped carbon quantum dots/PrFeO3 for photo-SCR removal of NOx[J].ACS Sustainable Chemistry & Engineering, 2018, 6(8):10616-10627.
 
【59】LI X Z, SHI H Y, YAN X Y, et al.Rational construction of direct Z-scheme doped perovskite/palygorskite nanocatalyst for photo-SCR removal of NO:Insight into the effect of Ce incorporation[J].Journal of Catalysis, 2019, 369:190-200.
 
相关信息
   标题 相关频次
 SiO2-CuO复合纤维材料的抗菌性能
 6
 分级多孔炭的生物诱导合成及其吸附性能
 5
 膨胀石墨-活性炭负载CeO2/TiO2复合材料的制备及其处理苯酚的性能
 4
 水热法合成棒束状纳米CeO2粉体及其催化性能
 4
 以滤纸为模板制备多孔CeO2纤维及其催化性能
 4
 以山茶花瓣为模板合成多孔片层结构MnO2及其电化学性能
 4
 CeO2/ATP纳米复合材料的水热合成及其表征
 3
 CeO2-MnO2纳米氧化物/石墨烯复合电极材料的制备及其超级电容性能
 3
 基于植物模板法制备高性能石墨烯/氧化锰复合材料及其电化学性能
 3
 以鱼鳞为模板合成仿生氧化铈及其性能
 3
 长玻璃纤维增强聚氨酯泡沫复合材料的制备及工艺优化
 2
 反应堆事故下安全壳地坑水池的化学效应
 2
 仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能
 2
 负载纳米TiO2膨胀石墨/活性炭复合材料的制备及其性能
 2
 改性膨胀石墨基炭/炭复合材料对甲醛气体的吸附性能
 2
 活性炭/膨胀石墨复合材料的制备、表征及其对罗丹明B的吸附性能
 2
 膨胀石墨对油田含油废水的动态吸附
 2
 膨胀石墨基炭/炭复合材料对苯酚的吸附动力学
 2
 一步浸渍化学活化法制备膨胀石墨/活性炭复合材料
 2
 一回路水化学对燃料包壳表面CRUD (污垢)的影响
 2
 以硅藻为模板合成TiO2微胶囊及其可见光催化性能
 2
 “吃掉”有机污染物 “消化”成无污染物
 1
 Angew. Chem.:无机矿物活性二氧化硅为基体液相外延生长新型二维层状硅酸锌纳米光催化材料
 1
 DW-34.7/(11.5-53)X型压缩机活塞与十字头断裂失效分析
 1
 GH4099合金的飞秒激光去除阈值
 1
 长时高温和应力对FGH97合金物理性能的影响
 1
 衬底材料和溅射方法对CNx薄膜膜基结合力的影响
 1
 醇水均匀沉淀法制备纳米CeO2粉体工艺及机理研究
 1
 感应淬火工艺参数对GCr15钢淬硬层的影响
 1
 高温热暴露时FGH97粉末高温合金中γ'相的演变及其定量表征
 1