搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
电感耦合等离子体原子发射光谱法测定地下水及生活饮用水中硫酸根的含量
          
Determination of Sulfate in Groundwater and Drinking Water by Inductively Coupled Plasma Atomic Emission Spectrometry

摘    要
鉴于硫离子对硫酸根含量测定的显著性影响,提出了题示方法。当硫离子质量浓度不大于0.10 mg·L-1时,样品无需预处理直接进样分析;当硫离子质量浓度大于0.10 mg·L-1时,取50 mL水样,加入2 mL硝酸,于75℃加热40 min,使硫离子完全转化为硫化氢。用水将消解液稀释至50 mL,按照优化的仪器工作条件测定(硫分析谱线选择180.731 nm)。结果显示:硫酸根的质量浓度在1.00~100.00 mg·L-1内与其对应的谱线强度呈线性关系,检出限(3s)为0.07 mg·L-1;对实际样品进行加标回收试验,硫酸根的检出量为15.92~90.80 mg·L-1,回收率为96.8%~103%,测定值的相对标准偏差(n=6)为0.85%~2.8%。
标    签 电感耦合等离子体原子发射光谱法   硫酸根   地下水   生活饮用水   inductively coupled plasma atomic emission spectrometry   sulfate   groundwater   drinking water  
 
Abstract
In view of the significant effect of sulfur ion on the determination of sulfate, the title method was proposed. When the mass concentration of sulfur ion was not greater than 0.10 mg·L-1, the sample was directly introduced for analysis without pretreatment. When the mass concentration of sulfur ion was greater than 0.10 mg·L-1, 50 mL of water sample was taken and mixed with 2 mL of nitric acid. The mixture was heated at 75℃ for 40 min, so that the sulfur ion was completely converted into hydrogen sulfide. The digestion solution was diluted to 50 mL with water, and determined according to the optimized working conditions of the instrument with sulfur analytical spectral line of 180.731 nm. It was shown that the mass concentrations of the sulfate were linearly related to their corresponding spectral line intensities in the range of 1.00-100.00 mg·L-1, with detection limit (3s) of 0.07 mg·L-1. Test for recovery was made by standard addition method on the actual samples, and detected amounts of sulfate were found in the range of 15.92-90.80 mg·L-1, with values of recovery in the range of 96.8%-103% and RSDs (n=6) of the determined values in the range of 0.85%-2.8%.

中图分类号 O657.31   DOI 10.11973/lhjy-hx202211004

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目 国家自然科学基金项目(41907175);中国地质科学院水文地质环境地质研究所基本科研业务费项目(SK202004)

收稿日期 2021/3/5

修改稿日期

网络出版日期

作者单位点击查看

备注刘冰冰,工程师,硕士,研究方向为水质分析,408729357@qq.com

引用该论文: LIU Bingbing,LIU Jia,JIA Na,ZHANG Chenling,ZHANG Yongtao. Determination of Sulfate in Groundwater and Drinking Water by Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2022, 58(11): 1260~1264
刘冰冰,刘佳,贾娜,张辰凌,张永涛. 电感耦合等离子体原子发射光谱法测定地下水及生活饮用水中硫酸根的含量[J]. 理化检验-化学分册, 2022, 58(11): 1260~1264


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】NARIYAN E, WOLKERSDORFER C, SILLANPÄÄ M. Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations[J]. Journal of Environmental Management, 2018,227:162-171.
 
【2】国家质量监督检验检疫总局,中国国家标准化管理委员会.地下水质量标准:GB/T 14848-2017[S].北京:中国标准出版社, 2017.
 
【3】中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB 5749-2006[S].北京:中国标准出版社, 2007.
 
【4】KHAN M R, WABAIDUR S M, BUSQUETS R, et al. Trace identification of sulfate anion in bottled and metropolitan water samples collected from various provinces of Saudi Arabia[J]. Journal of King Saud University-Science, 2020,32(3):1986-1992.
 
【5】CǍLINESCU O, MARIN N M, IONITǍ D, et al. Selective removal of sulfate ion from different drinking waters[J]. Environmental Nanotechnology, Monitoring & Management, 2016,6:164-168.
 
【6】严瑾,高琦.在线超滤-离子色谱法测定降水中4种阴离子[J].化学分析计量, 2019,28(2):99-101.
 
【7】王斌,刘巍平,王荣,等.离子色谱法测定钾盐矿中硫酸根和溴离子的含量[J].理化检验-化学分册, 2018,54(7):806-809.
 
【8】黄杰.崇明岛PM2.5中硫酸根、硝酸根及其前体物变化特征及来源[J].中国环境监测, 2019,35(2):70-76.
 
【9】范迪,赵敬丹,秦峰,等.离子色谱法同时测定硫酸妥布霉素注射液中硫酸根及抗氧剂焦亚硫酸钠的含量[J].中国医药工业杂志, 2020,51(8):1056-1059.
 
【10】王诗语,凌凤香,韩博,等.管式炉燃烧-离子色谱法测定固体生物质燃料中硫和氯[J].理化检验-化学分册, 2020,56(7):755-759.
 
【11】LEE H K, KONG T Y, CHOI W G, et al. Metabolite identification and profile of endosulfan sulfate in three human liver preparations using liquid chromatography-high resolution mass spectrometry[J]. Journal of Chromatography B, 2020,1140:121996.
 
【12】BANSAL S, LAU A J. Fast and sensitive quantification of human liver cytosolic lithocholic acid sulfation using ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2016,1011:171-178.
 
【13】URUPINA D, GAUDION V, ROMANIAS M N, et al. Method development and validation for the determination of sulfites and sulfates on the surface of mineral atmospheric samples using reverse-phase liquid chromatography[J]. Talanta, 2020,219:121318.
 
【14】TÓTH G, VÉKEY K, SUGÁR S, et al. Salt gradient chromatographic separation of chondroitin sulfate disaccharides[J]. Journal of Chromatography A, 2020,1619:460979.
 
【15】KHALED E, KHALIL M M, ABED EL AZIZ G M. Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples[J]. Sensors and Actuators B:Chemical, 2017,244:876-884.
 
【16】YU L Y, XU Q, JIN D Q, et al. Highly sensitive electrochemical determination of sulfate in PM2.5 based on the formation of heteropoly blue at poly-L-lysine-functionalized graphene modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide[J]. Chemical Engineering Journal, 2016,294:122-131.
 
【17】CACHO F, MASAC J, ZAKHAR R, et al. Indirect electrochemical determination of sulfates in mineral water by a flow-through system[J]. Talanta, 2020,207:120281.
 
【18】刘月菊,宋明明,邸卫利,等.电位滴定法测定钒电池电解液中硫酸根[J].冶金分析, 2019,39(4):75-79.
 
【19】OZKOK F, SAHIN Y M, ENISOGLU A V, et al. Sensitive detection of iron (II) sulfate with a novel reagent using spectrophotometry[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2020,240:118631.
 
【20】SALEM J K, DRAZ M A. Synthesis and application of silver nanorods for the colorimetric detection of sulfate in water[J]. Inorganic Chemistry Communications, 2020,116:107900.
 
【21】YEHIA A M, ARAFA R M, ABBAS S S, et al. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016,153:231-240.
 
【22】胡璇,匡玉云,石磊.铬酸钡分光光度法测定高硫铝土矿中硫酸根[J].冶金分析, 2018,38(12):59-63.
 
【23】冷琳,李明.作业场所空气中硫酸雾的铬酸钡分光光度测定法[J].中国卫生检验杂志, 2007,17(3):448-449.
 
【24】苏武,李永生,王辛龙.用自行设计的自动分析系统测定高含量SO3——对硫酸钡浊度测定法的改进[J].理化检验-化学分册, 2020,56(1):84-89.
 
【25】李朝英,郑路.硫酸钡比浊改进法在测定森林地表径流中硫酸根含量的应用[J].环境保护科学, 2018,44(5):113-117.
 
【26】王力君,石华.电感耦合等离子体原子发射光谱法(ICP-AES)直接测定天然矿泉水中的硫酸根[J].中国无机分析化学, 2014,4(4):16-17.
 
【27】胡家祯,王琳,刘军,等.电感耦合等离子体原子发射光谱法测定土壤中水溶性硫酸根[J].冶金分析, 2018,38(11):12-17.
 
【28】中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水标准检验方法无机非金属指标:GB/T 5750.5-2006[S].北京:中国标准出版社, 2007.
 
相关信息
   标题 相关频次
 固相萃取膜富集-超声解吸-气相色谱法测定地下水中有机磷农药的含量
 8
 控温消解-氢化物发生-原子荧光光谱法测定水中硒形态
 8
 离子色谱-电感耦合等离子体质谱法测定地下水中4种形态砷的含量
 5
 在非固定实验场所用固相萃取膜富集地下水中半挥发有机污染物及其稳定保存时间和运输条件的研究
 5
 电感耦合等离子体质谱法测定地热水中26种过渡金属元素的含量
 4
 离子色谱法快速测定饮用水中4种卤氧化合物
 4
 电感耦合等离子体原子发射光谱法测定光卤石矿中钾、钠、钙、镁和硫酸根
 3
 固相萃取-气相色谱-质谱法测定地下水中多环芳烃
 3
 CeO2加入含量对激光熔覆WC增强镍基合金涂层组织与性能的影响
 2
 CNAS认可的检测实验室的分类监管核查指标体系研究
 2
 Ni60合金包覆WC粉激光熔覆涂层的组织与性能
 2
 QuEChERS前处理-高效液相色谱法测定MS培养基中6-苄氨基嘌呤、萘乙酸与吲哚丁酸的含量
 2
 艾士卡试剂熔样-电感耦合等离子体原子发射光谱法同时测定煤炭中砷、磷和硫的含量
 2
 超声浸提-电感耦合等离子体原子发射光谱法测定土壤有效硅的含量
 2
 超声衍生萃取-气相色谱-质谱法测定土壤中茅草枯含量
 2
 吹扫捕集-气相色谱-质谱法测定地下水中的挥发性有机物
 2
 吹扫捕集-气相色谱-质谱法快速测定同序列地下水和土壤中的37种挥发性有机物
 2
 电感耦合等离子体原子发射光谱法测定氟化氢气体中16种金属元素
 2
 电感耦合等离子体原子发射光谱法测定高钡光学玻璃中锶的含量
 2
 电感耦合等离子体原子发射光谱法测定高钛型钒渣中铬、钴、镍、镓、钪、锆的含量
 2
 电感耦合等离子体原子发射光谱法同时测定复垦土壤中有效铜、锌、铁、锰、硫的含量
 2
 电感耦合等离子体原子发射光谱法在铋矿石化学物相分析中的应用
 2
 顶空-气相色谱法测定生活饮用水中25种挥发性卤代烃
 2
 分光光度法测定果蔬中残杀威残留量
 2
 分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量
 2
 钢制管道外防腐蚀涂料的应用进展
 2
 高温模拟压水堆一回路水中SO42-对690TT镍基合金SCC敏感性的影响
 2
 混合酸溶解-电感耦合等离子体原子发射光谱法测定土壤中17种元素
 2
 火焰原子吸收光谱法间接测定饮用水中硫酸盐
 2
 基于吹扫捕集-气相色谱-质谱法探究单一/联合消毒剂消毒后生活饮用水中4种三卤甲烷生成量的变化
 2