搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Fe-0.2C-7Mn中锰钢的单道次热压缩变形行为及热加工图
          
Single-Pass Hot Compression Deformation Behavior and Processing Map ofFe-0.2C-7Mn Medium Mn Steel

摘    要
采用Gleeble-3500型热模拟试验机对Fe-0.2C-7Mn中锰钢进行单道次等温压缩试验,研究了该钢在不同变形温度(950~1 150℃)和应变速率(0.001~1 s-1)下的热变形行为,通过计算应变速率敏感指数、功率耗散效率以及失稳参数建立该钢的热加工图,并获得最佳的热加工工艺窗口。结果表明:随着应变速率的增加和变形温度的降低,该钢的流变应力增大;高变形温度和低应变速率有利于动态再结晶的发生,动态再结晶程度的差异会对应变速率敏感指数产生很大的影响;不同真应变下的失稳区均出现在高温高应变速率区域,并且基本与功率耗散图中的低功率耗散效率区域重合。试验钢的最佳热加工工艺窗口为变形温度975~1 100℃、应变速率0.006~1 s-1
标    签 Fe-0.2C-7Mn中锰钢   热变形行为   热加工图   动态再结晶   Fe-0.2C-7Mn medium Mn steel   hot deformation behavior   processing map   dynamic recrystallization  
 
Abstract
The hot deformation behavior of Fe-0.2C-7Mn medium Mn steel at different deformation temperatures (950-1 150℃) and strain rates (0.001-1 s-1) was investigated by single-pass isothermal compression tests on Gleeble-3500 thermal-mechanical simulator. The processing map of the steel was established by calculating the strain rate sensitivity index, power dissipation efficiency and instability parameters, and the best process window was obtained. The results show that the flow stress of the steel increased with increasing strain rate or decreasing deformation temperature. High deformation temperatures and low strain rates were conducive to the occurrence of dynamic recrystallization. The difference of dynamic recrystallization degree had great influence on strain rate sensitivity index. The instability regions at different true strains appeared in the region of high deformation temperatures and high strain rates, and basically coincided with the low power dissipation efficiency region in the power dissipation map. The best process window for the test steel was deformation temperature of 975-1 100℃ and strain rate of 0.006-1 s-1.

中图分类号 TG335   DOI 10.11973/jxgccl202302016

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家重点研发计划项目(2017YFB0304402)

收稿日期 2021/12/15

修改稿日期 2022/11/15

网络出版日期

作者单位点击查看

备注汪杨(1993-),男,安徽蚌埠人,博士研究生

引用该论文: WANG Yang,CEN Qiongying,WANG Weijun,ZHANG Mei. Single-Pass Hot Compression Deformation Behavior and Processing Map ofFe-0.2C-7Mn Medium Mn Steel[J]. Materials for mechancial engineering, 2023, 47(2): 90~95
汪杨,岑琼瑛,王魏军,张梅. Fe-0.2C-7Mn中锰钢的单道次热压缩变形行为及热加工图[J]. 机械工程材料, 2023, 47(2): 90~95


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】JEONG M S, PARK T M, CHOI S, et al.Recovering the ductility of medium-Mn steel by restoring the original microstructure[J].Scripta Materialia, 2021, 190:16-21.
 
【2】CHANDAN A K, BANSAL G K, KUNDU J, et al.Effect of prior austenite grain size on the evolution of microstructure and mechanical properties of an intercritically annealed medium manganese steel[J].Materials Science and Engineering:A, 2019, 768:138458.
 
【3】DONG H, SUN X J, CAO W Q, et al.On the performance improvement of steels through M3structure control[C]//Advanced Steels. Berlin:[s.n.], 2011.
 
【4】阳锋, 罗海文, 董瀚.退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J].金属学报, 2018, 54(6):859-867. YANG F, LUO H W, DONG H.Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J].Acta Metallurgica Sinica, 2018, 54(6):859-867.
 
【5】ZHANG R, CAO W Q, PENG Z J, et al.Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J].Materials Science and Engineering:A, 2013, 583:84-88.
 
【6】ZHAN W, CAO L Q, HU J, et al.Intercritical rolling induced ultrafine lamellar structure and enhanced mechanical properties of medium-Mn steel[J].Journal of Iron and Steel Research, International, 2014, 21(5):551-558.
 
【7】GEGEL H L.Synthesis of atomistics and continuum modeling to describe microstructure:Computer simulation in materials science[M]. Materials Park, Ohio:ASM, 1986:291-344.
 
【8】MALAS J C, SEETHARAMAN V.Using material behavior models to develop process control strategies[J].JOM, 1992, 44(6):8-13.
 
【9】LIAO H C, WU Y N, ZHOU K X, et al.Hot deformation behavior and processing map of Al-Si-Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation[J].Materials & Design, 2015, 65:1091-1099.
 
【10】REN F C, CHEN F, CHEN J, et al.Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel[J].Journal of Manufacturing Processes, 2018, 31:640-649.
 
【11】LI X, SONG R B, KANG T, et al.Hot deformation and dynamic recrystallization behavior of Fe-8Mn-6Al-0.2C steel[J].Materials Science Forum, 2017, 898:797-802.
 
【12】SUN X Y, ZHANG M, WANG Y, et al.Kinetics and numerical simulation of dynamic recrystallization behavior of medium Mn steel in hot working[J].Steel Research International, 2020, 91(7):1900675.
 
【13】WANG Y, ZHANG M, SUN X Y.Investigation on high temperature compression deformation behavior of 0.2C7Mn steel[J].Procedia Manufacturing, 2019, 37:327-334.
 
【14】ZHU D L, ZHANG M, WANG Y.Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy[J].Metallurgical and Materials Transactions B, 2019, 50(4):1662-1673.
 
【15】SUN Y, FENG X Y, HU L X, et al.Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method[J].Journal of Alloys and Compounds, 2018, 753:256-271.
 
【16】LIN P, HAO Y G, ZHANG B Y, et al.Strain rate sensitivity of Ti-22Al-25Nb (at%) alloy during high temperature deformation[J].Materials Science and Engineering:A, 2018, 710:336-342.
 
【17】SUN J Z, LI M Q, LI H.Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression[J].Journal of Alloys and Compounds, 2018, 730:533-543.
 
【18】向嵩, 谭智林, 梁益龙.基于Murty流变失稳判据的Nb-V-Ti低碳微合金钢加工图分析[J].材料热处理学报, 2013, 34(增刊2):243-247. XIANG S, TAN Z L, LIANG Y L.Processing map analysis of Nb-V-Ti low carbon microalloyed steel based on Murty criterion[J].Transactions of Materials and Heat Treatment, 2013, 34(S2):243-247.
 
【19】GUO S L, LI D F, WU X P, et al.Characterization of hot deformation behavior of a Zn-10.2Al-2.1Cu alloy using processing maps[J].Materials & Design, 2012, 41:158-166.
 
【20】PRASAD Y V R K.Processing maps:A status report[J].Journal of Materials Engineering and Performance, 2003, 12(6):638-645.
 
相关信息
   标题 相关频次
 Fe-0.1C-5Mn中锰钢在双道次热压缩变形期间的静态再结晶行为
 8
 WE43镁合金的热变形行为及热加工图
 4
 4Cr5MoSiV1热作模具钢的热变形行为与热加工图
 3
 0.5%石墨烯增强铝基复合材料的热变形行为
 2
 22MnB5钢制轿车后桥横梁热冲压成形的有限元模拟
 2
 40CrNi2MoE钢的高温塑性变形特征
 2
 45钢控轧控冷工艺模拟试验
 2
 7075铝合金热塑性变形动态再结晶动力学模型
 2
 AZ61镁合金的热压缩变形行为及组织演变
 2
 AZ91镁合金的热压缩变形行为及晶粒细化
 2
 BH10Mn2G焊接用钢的热变形行为
 2
 Cr8钢的动态再结晶行为及组织转变
 2
 Cr9Mo高合金钢的热流变应力本构方程
 2
 CuNiSiP合金的动态再结晶行为
 2
 DP处理后GH4169合金在热变形过程中的组织演变
 2
 F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟
 2
 FV520B马氏体不锈钢的热变形行为和本构关系
 2
 GH4169镍基高温合金的热变形行为与再结晶模型
 2
 K60、X80管线钢连铸坯的高温塑性
 2
 Mn18Cr18N护环钢的动态再结晶行为及功率耗散图
 2
 Q235钢动态再结晶过程中的温度变化和变形道次间的静态软化
 2
 Q345钢热变形奥氏体晶粒尺寸的数值模拟
 2
 QuEChERS-气相色谱-串联质谱法测定白附子中35种禁用农药的残留量
 2
 TC17钛合金热变形行为及本构模型
 2
 X65级含铜管线钢的高温塑性
 2
 X70管线钢管件制造热过程中的形变规律
 2
 α+β两相区压缩变形后TC21合金的显微组织模拟
 2
 奥氏体不锈钢的热压缩本构方程及动态再结晶行为
 2
 不同变形量下20CrNi2Mo钢的热压缩变形行为
 2
 不同焊接工艺下FB780钢焊接接头热影响区的显微组织和冲击韧性
 2