搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
电解渗氢对6061-T6铝合金拉伸性能和断裂过程的影响
          
Effect of Electrolytic Hydrogen Permeation on Tensile Properties and Fracture Process of 6061-T6 Aluminum Alloy

摘    要
通过电解渗氢试验,研究了电流密度与渗氢时间对6061-T6铝合金拉伸性能及断裂过程的影响。结果表明:在电解渗氢过程中,氢原子在6061-T6铝合金试样表面氧化层吸附,这部分氢原子可在150 ℃以下发生低温脱附;氢原子还向合金内部扩散,在位错或晶界等位置偏聚,导致Al晶格畸变,这部分氢原子的脱附温度要高得多;随着电流密度的增大与渗氢时间的延长,6061-T6铝合金试样渗氢层深度逐渐增大,强度及塑性逐渐降低,准解理断口比例逐渐增大;电解渗氢后6061-T6铝合金的塑性指标下降明显。
标    签 6061-T6铝合金   电解渗氢   扩散   脱附   力学性能   断口形貌   6061-T6 aluminum alloy   electrolytic hydrogen permeation   diffusion   desorption   mechanical property   fractograph  
 
Abstract
The effects of current density and hydrogen permeation time on the tensile properties and fracture process of 6061-T6 aluminum alloy were studied by electrolytic hydrogen permeation test. The results showed that hydrogen atoms were adsorbed on the surface oxide layer of 6061-T6 aluminum alloy sample during electrolytic hydrogenation, and these hydrogen atoms could be desorbed at low temperature below 150 ℃. Hydrogen atoms also diffused into the alloy and segregated at dislocations or grain boundaries, resulting in Al lattice distortion. The desorption temperature of these hydrogen atoms was much higher. With the increase of current density and hydrogen permeation time, the depth of hydrogen permeation layer of 6061-T6 aluminum alloy sample increased gradually, the strength and plasticity decreased gradually, and the proportion of quasi-cleavage fracture increased gradually. The plasticity index of 6061-T6 aluminum alloy decreased obviously after electrolytic hydrogenation.

中图分类号 TG146.2   DOI 10.11973/fsyfh-202303004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家电网有限公司总部科技项目资助(521205190007);国网安徽省电力有限公司科技项目资助(521205190029)

收稿日期 2021/4/14

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: WEI Jintao,TENG Yue,WANG Hu,CHEN Guohong,MIAO Chunhui,TANG Wenming. Effect of Electrolytic Hydrogen Permeation on Tensile Properties and Fracture Process of 6061-T6 Aluminum Alloy[J]. Corrosion & Protection, 2023, 44(3): 24


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GURZ M,BALTACIOGLU E,HAMES Y,et al. The meeting of hydrogen and automotive:a review[J]. International Journal of Hydrogen Energy,2017,42(36):23334-23346.
 
【2】BARTHELEMY H,WEBER M,BARBIER F. Hydrogen storage:recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy,2017,42(11):7254-7262.
 
【3】郑传祥,魏宗新,王亮,等. 高压储氢容器失稳分析与研制[J]. 化工机械,2014,41(5):589-592,661.
 
【4】周超,王辉,欧阳柳章,等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报,2019,33(1):117-126.
 
【5】MOLKOV V,DADASHZADEH M,MAKAROV D. Physical model of onboard hydrogen storage tank thermal behaviour during fuelling[J]. International Journal of Hydrogen Energy,2019,44(8):4374-4384.
 
【6】LOUTHAN M R Jr,CASKEY G R Jr. Hydrogen transport and embrittlement in structural metals[J]. International Journal of Hydrogen Energy,1976,1(3):291-305.
 
【7】KAWAMOTO K,ODA Y,NOGUCHI H. Fatigue crack growth characteristics and effects of testing frequency on fatigue crack growth rate in a hydrogen gas environment in a few alloys[J]. Materials Science Forum,2007,567/568:329-332.
 
【8】郑津洋,崔天成,顾超华,等. 高压氢气对6061铝合金力学性能的影响[J]. 高压物理学报,2017,31(5):505-510.
 
【9】DONÑU RUIZ M A,CORTÉS SUÁREZ V J,LÓPEZ PERRUSQUIA N,et al. Effect of hydrogen on mechanical properties of aluminum AA 6061 alloy hardened by precipitation[J]. MRS Online Proceedings library,2011,1373:95-100.
 
【10】QI W J,SONG R G,QI X,et al. Hydrogen embrittlement susceptibility and hydrogen-induced additive stress of 7050 aluminum alloy under various aging states[J]. Journal of Materials Engineering and Performance,2015,24(9):3343-3355.
 
【11】SUZUKI H,KOBAYASHI D,TAKAI K,et al. Hydrogen degradation property of electrochemically charged aluminum[J]. MRS Online Proceedings library,2007,1042:1042-S03.
 
【12】滕越,陈国宏,魏金韬,等. Ⅲ型储氢气瓶内胆6061-T6铝合金的氢致损伤研究进展[J]. 装备环境工程,2021,18(4):103-108.
 
【13】顾弘,周仲柏,陶映初,等. 氢在金属中的扩散——(Ⅲ)硫脲及其衍生物在盐酸介质中对钢铁渗氢影响的研究[J]. 武汉大学学报(自然科学版),1982,28(2):57-68.
 
【14】蒲霞. N18锆合金电解渗氢及渗氢后力学行为研究[D]. 成都:西华大学,2011.
 
【15】SUZUKI H,KOBAYASHI D,HANADA N,et al. The existing state of hydrogen in electrochemically charged commercial purity aluminum and its effect on the tensile properties[J]. Journal of the Japan Institute of Metals,2010,74(2):65-71.
 
【16】ZHOU C S,CHEN X Y,ZHANG L,et al. Deformation-induced hydrogen desorption from the surface oxide layer of 6061 aluminum alloy[J]. Journal of Alloys and Compounds,2014,617:792-796.
 
【17】屈文敏,花争立,李雄鹰,等. 热脱附谱技术在储氢容器材料氢陷阱研究中的应用研究进展[J]. 化工进展,2017,36(11):4160-4169.
 
【18】DEY S,CHATTORAJ I. Interaction of strain rate and hydrogen input on the embrittlement of 7075 T6 Aluminum alloy[J]. Materials Science and Engineering:A,2016,661:168-178.
 
【19】宋仁国,曾梅光,张宝金. 氢致7175铝合金韧脆断裂转变行为[J]. 东北大学学报(自然科学版),1996(3):287-290.
 
【20】郑传波,益帼,高延敏. 高强铝合金应力腐蚀及氢渗透行为研究进展[J]. 腐蚀与防护,2013,34(7):600-604.
 
【21】KUMAR S,NAMBOODHIRI T K G. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020[J]. Bulletin of Materials Science,2011,34(2):311-321.
 
【22】毛杰,熊京远,王超,等. 7003铝合金双级双时效峰的氢脆敏感性[J]. 轻合金加工技术,2012,40(11):53-56,60.
 
相关信息
   标题 相关频次
 20Cr1Mo1VTiB钢制高温紧固螺栓断裂失效分析
 6
 小口径厚壁12Cr1MoVG钢管焊接残余应力的数值模拟
 6
 6061-T6铝合金超声辅助搅拌摩擦焊接头的组织与力学性能
 4
 6061-T6铝合金搅拌摩擦焊接头的组织和性能
 4
 隔离开关用Al-Mg-Cu合金引流板的腐蚀原因
 4
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 3
 反应烧结微米级SiC陶瓷材料的结构与力学性能
 3
 累积叠轧焊不锈钢的组织和性能
 3
 亚温淬火对钻杆钢组织和性能的影响
 3
 支柱绝缘子陶瓷材料的结构与性能
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1 000 MW核电汽轮机空心螺栓断裂原因分析
 2
 1.25Cr0.5MoSi钢的焊接工艺评定
 2
 1060工业纯铝累积叠轧后的力学性能
 2
 1060铝在累积轧制中组织和性能的演变
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 14NiCrMo10 6V与Q345E钢过渡匹配焊接接头的组织与力学性能
 2
 15Ni3CrMoV与10Ni5CrMoV异种钢对接接头的显微组织及力学性能
 2
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 2
 2 000 t水压机立柱断裂分析
 2
 2024铝合金电子束焊接接头的显微组织与力学性能
 2
 20Cr钢与B级钢焊接接头的组织和性能
 2
 2195铝锂合金的化学铣切工艺优化
 2
 2205双相不锈钢/Q345低合金钢爆炸复合板的组织与力学性能
 2
 22Mn2SiVBS热轧无缝钢管控冷时的组织与性能
 2
 240 MPa级高强IF钢的冷轧压下率和退火温度
 2
 25Cr2MoVA钢调质规范对力学性能的影响
 2