搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高效液相色谱-三重四极杆复合线性离子阱质谱法检测水产品中氟喹诺酮类抗生素和镇静剂
          
Detection of Fluroquinolone Antibiotics and Sedatives in Aquatic Products by High Performance Liquid Chromatography- Triple Quadrupole/Composite Linear Ion Trap Mass Spectrometry

摘    要
为实现水产品中抗生素和镇静剂的同时、快速检测,进行了题示研究。分取2.0 g匀浆后的样品的肌肉组织,加入体积比79∶1∶20的乙腈-乙酸-水混合溶液10 mL,振荡1 min,超声10 min。加入2.0 g氯化钠,振荡1 min,于-20 ℃保存30 min,用于去除提取液中的脂肪。离心10 min,分取1 mL上清液注入装载有150 mg C18的CAFS clean-up净化柱中,多次推动活塞,将提取液全部转移到2 mL离心管中。分取0.5 mL净化液,加入0.5 mL 0.1%(体积分数,下同)甲酸溶液,混匀后过0.22 μm尼龙滤膜。滤液注入高效液相色谱-三重四极杆复合线性离子阱质谱仪,9种目标物在BEH C18色谱柱上用不同体积比的0.1%甲酸溶液和含0.1%甲酸的甲醇溶液的混合溶液进行梯度洗脱分离后,用电喷雾离子源正离子(ESI+)模式电离,多反应监测(MRM)模式检测,基质匹配法定量。结果显示,9种目标物的质量分数分别在1.0~50.0 μg·kg-1(丁卡因、布比卡因、恩诺沙星和氧氟沙星)、2.0~50.0 μg·kg-1(地西泮和氟罗沙星)、5.0~50.0 μg·kg-1(环丙沙星、培氟沙星和洛美沙星)内与对应的峰面积呈线性关系,检出限为0.2~1.0 μg·kg-1;对空白草鱼样品进行3个浓度水平的加标回收试验,回收率为99.1%~110%,测定值的相对标准偏差(n=6)分别为1.9%~8.2%(日内精密度试验)和2.6%~8.5%(日间精密度试验)。方法用于28份水产品的分析,检出了1种镇静剂布比卡因(检出量为1.41 μg·kg-1)以及4种氟喹诺酮类抗生素[洛美沙星、培氟沙星、环丙沙星(3种抗生素检出量均低于测定下限)和恩诺沙星(检出量为2.43~4.61μg·kg-1,低于GB 31650-2019规定的限量)]。
标    签 滤过型净化柱   高效液相色谱-三重四极杆复合线性离子阱质谱法   氟喹诺酮类抗生素   镇静剂   水产品   pass-through clean-up column   high performance liquid chromatography-triple quadrupole/composite linear ion trap mass spectrometry   fluroquinolone antibiotic   sedative   aquatic product  
 
Abstract
In order to realize the simultaneous and rapid determination of antibiotics and sedatives in aquatic products, the study mentioned by title was carried out. An aliquot (2.0 g) of muscle tissue of the sample homogenized was taken, and 10 mL of acetonitrile-acetic acid-water mixed solution at volume ratio of 79∶1∶20 was added. The mixture was shaken for 1 min, ultrasonicated for 10 min, and mixed with 2.0 g of sodium chloride. The mixture was shaken for 1 min, stored at -20 ℃ for 30 min to remove fat from the extract, and centrifuged for 10 min. An aliquot (1 mL) of supernatant was introduced into the CAFS clean-up column loaded with 150 mg C18, and the extract was transferred into a 2 mL-centrifuge tube by pushing the piston several times. An aliquot (0.5 mL) of the purified solution was taken, and mixed with 0.5 mL of 0.1% (volume fraction, the same below) formic acid solution. The mixed solution was passed through a 0.22 μm nylon filter membrane, and the filtrate was introduced into the high performance liquid chromatograph-triple quadrupole/composite linear ion trap mass spectrometer, and the 9 targets were separated on the BEH C18 column with mixed solutions composed of 0.1% formic acid solution and methanol solution containing 0.1% formic acid at different volume ratios by gradient elution, ionized by ESI+ mode, detected by MRM mode, and quantified by the matrix matching method. As shown by the results, linear relationships between values of the mass fraction and the peak area of the 9 targets were kept in the ranges of 1.0-50.0 μg·kg-1 (tetracaine, bupivacaine, enrofloxacin and ofloxacin), 2.0-50.0 μg·kg-1 (diazepam and fluroxacin), and 5.0-50.0 μg·kg-1 (ciprofloxacin, pefloxacin and lomefloxacin), with detection limits (3S/N) in the range of 0.2-1.0 μg·kg-1. Test for the spiked recovery was made on the blank grass carp sample in the 3 concentration levels, giving recoveries in the range of 99.1%-110%, and RSDs (n=6) of the determined values were in the ranges of 1.9%-8.2% (intra-day precision test) and 2.6%-8.5% (inter-day precision test). The proposed method was applied to the analysis of 28 aquatic products, 1 bupivacaine of sedative (the detection amount was 1.41 μg·kg-1), and 4 fluoroquinolone antibiotics of lomefloxacin, pefloxacin, ciprofloxacin (detection amounts were lower than the lower limit of determination) and enrofloxacin [detection amounts were in the range of 2.43-4.61 μg·kg-1, lower than the limit specified by GB 31650-2019] were detected.

中图分类号 O657.63   DOI 10.11973/lhjy-hx202305014

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(色谱-质谱联用技术在新型污染物分析中的应用)

基金项目 中央级公益性科研院所基本科研业务项目(2020B005);中国水产科学研究院科技创新项目(2020TD75)

收稿日期 2022/1/4

修改稿日期

网络出版日期

作者单位点击查看


备注穆树荷,硕士研究生,主要从事水产品中药物残留检测等方面的研究

引用该论文: MU Shuhe,FENG Tengwang,LIU Huan,SUN Huiwu,LI Jincheng. Detection of Fluroquinolone Antibiotics and Sedatives in Aquatic Products by High Performance Liquid Chromatography- Triple Quadrupole/Composite Linear Ion Trap Mass Spectrometry[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(5): 561~568
穆树荷,封腾望,刘欢,孙慧武,李晋成. 高效液相色谱-三重四极杆复合线性离子阱质谱法检测水产品中氟喹诺酮类抗生素和镇静剂[J]. 理化检验-化学分册, 2023, 59(5): 561~568


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHOU Z H, FU Y Q, QIN Q, et all. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples[J]. Journal of Chromatography A, 2018,1560:19-25.
 
【2】LIN Z Z, ZHANG H Y, PENG A H, et al. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers[J]. Food Chemistry, 2016,200:32-37.
 
【3】CHEN D, DELMAS J M, HURTAUD-PESSEL D, et al. Development of a multi-class method to determine nitroimidazoles, nitrofurans, pharmacologically active dyes and chloramphenicol in aquaculture products by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2020,311:125924.
 
【4】JU S, DENG J, CHENG J, et al. Determination of leucomalachite green,leucocrystal violet and their chromic forms using excitation-emission matrix fluorescence coupled with second-order calibration after dispersive liquid-liquid microextraction[J]. Food Chemistry, 2015,185:479-487.
 
【5】KWAN P P, BANERJEE S, SHARIFF M, et al. Quantitative analysis of malachite green and leucomalachite green residues in fish purchased from the markets in Malaysia[J]. Food Control, 2018,92:101-106.
 
【6】HE X, DENG M, WANG Q, et al. Residues and health risk assessment of quinolones and sulfonamides in cultured fish from Pearl River Delta, China[J]. Aquaculture, 2016,458:38-46.
 
【7】FÀBREGA A, SÁNCHEZ-CÉSPEDES J, SOTO S, et al. Quinolone resistance in the food chain[J]. International Journal of Antimicrobial Agents, 2008,31(4):307-315.
 
【8】GUIDI L R, SANTOS F A, RIBEIRO A C, et al. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method[J]. Food Chemistry, 2018,245:1232-1238.
 
【9】TYSON G H, TATE H P, ZHAO S H, et al. Identification of plasmid-mediated quinolone resistance in salmonella isolated from swine ceca and retail pork chops in the United States[J]. Antimicrobial Agents and Chemotherapy, 2017,61(10):e01317-e01318.
 
【10】中华人民共和国农业农村部,国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准 食品中兽药最大残留限量:GB 31650-2019[S].北京:中国标准出版社, 2019.
 
【11】中华人民共和国农业部.中华人民共和国农业部2292号公告-2015[A/OL]. (2015-9-01)[2021-12-26]. http://law.foodmate.net/show-187614.html.
 
【12】李芹,穆树荷,韩刚,等.水产品中镇静剂残留检测技术研究进展[J].中国农学通报, 2021,37(12):86-91.
 
【13】中华人民共和国农业部. 动物性食品中兽药最高残留限量. 中华人民共和国农业部235号公告-2002[A/OL]. (2002-12-24)[2021-12-26]. http://www.foodmate.net/law/shipin/163968.html.
 
【14】STOILOVA N A, SURLEVA A R, STOEV G. Simultaneous determination of nine quinolones in food by liquid chromatography with fluorescence detection[J]. Food Analytical Methods, 2013,6(3):803-813.
 
【15】CZYRSKI A, SZNURA J. The application of Box-Behnken-design in the optimization of HPLC separation of fluoroquinolones[J]. Scientific Reports, 2019,9(1):19458.
 
【16】LOUISE J, TARGA M M, BAZZAN A J, et al. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS)[J]. Talanta, 2015,144:686-695.
 
【17】SAXENA S K, RANGASAMY R, KRISHNAN A A, et al. Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS[J]. Food Chemistry, 2018,260:336-343.
 
【18】李晋成,刘欢,吴立冬,等.动物体内麻醉剂残留检测技术研究进展[J].食品科学, 2014,35(5):251-256.
 
【19】郑向华,孙婷,陈燕,等.固相萃取-液相色谱串联质谱法同时测定水产品中3种鱼用麻醉剂残留量[J].食品科技, 2020,45(4):333-337.
 
【20】HUANG S, XU J, WU J, et al. Rapid detection of five anesthetics in tilapias by in vivo solid phase microextraction coupling with gas chromatography-mass spectrometry[J]. Talanta, 2017,168:263-268.
 
【21】高平,陈日檬,曾丹丹,等.新型QuEChERS结合固相萃取-高效液相色谱法测定水产品中6种麻醉剂[J].分析试验室, 2018,37(1):88-92.
 
【22】XIE C N, LI Q, HAN G, et al. Stable isotope dilution assay for the accurate determination of tricaine in fish samples by HPLC-MS-MS[J]. Biomedical Chromatography:BMC, 2019,33(5):e4512.
 
【23】于慧娟,汪洋,孔聪,等.超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速筛查鱼和虾样品中200种药物残留[J].质谱学报, 2019,40(2):97-108.
 
【24】李晋成,韩刚,刘欢.推杆式滤过型净化柱:210448175U[P]. 2020-05-05.
 
相关信息
   标题 相关频次
 GH738高温合金涡轮机匣开裂原因
 2
 QuEChERS提取-高效液相色谱-高分辨质谱法测定水产品中3种蓝藻毒素的含量
 2
 ω型扣件弹条的非线性力学行为
 2
 超高效液相色谱-串联质谱法测定水产品中瑞他莫林的残留量
 2
 超高效液相色谱法测定水产品中甲基睾酮残留物
 2
 超高效液相色谱法测定水产品中喹乙醇的残留量
 2
 超声提取-高效液相色谱-电感耦合等离子体质谱法测定水产品中5种形态的砷
 2
 蛋白质对测定水产品中氯苯类化合物的影响及消除
 2
 电感耦合等离子体质谱法测定水产品中铬、铜、锌、砷、镉、铅的含量
 2
 航空发动机带凸肩风扇转子叶片裂纹产生原因
 2
 航空发动机火焰筒整流罩断裂原因
 2
 碱性离子液体水解-双水相胶束体系提取-超高效液相色谱法测定水产品中胆固醇的含量
 2
 胶体金免疫层析法检测水产品中15种喹诺酮类药物
 2
 空化水射流冲蚀纯铜的表面空蚀损伤
 2
 锰、锶含量对铸造铝硅合金铁相形貌和相组成的影响
 2
 纳米金/垂直阵列碳纳米管修饰铜电极的制备及其对曲酸的电催化性能研究
 2
 偏二甲肼衍生-高效液相色谱法测定水产品中甲醛
 2
 气相色谱-串联质谱法测定水产品中五氯苯酚及其钠盐的残留量
 2
 气相色谱-电子捕获检测器快速测定水产品中多种农药及兽药残留
 2
 水产品中磺胺类药物残留量实验室间检测能力的验证结果与分析
 2
 同位素稀释-超高效液相色谱-串联质谱法同时测定水产品中15种头孢菌素的残留量
 2
 液相色谱-串联质谱法测定水产品中甲氨基阿维菌素的残留量
 2
 液相色谱-串联质谱法同时测定水产品中三苯甲烷类与噻嗪类染料及其代谢产物
 2
 7种水产品检测报告 看看有什么惊人发现?
 1
 超高效液相色谱-串联质谱法测定水产品中孔雀石绿和隐色孔雀石绿残留量
 1
 超高效液相色谱-串联质谱法测定水产品中孔雀石绿及其代谢物残留量
 1
 超高效液相色谱-串联质谱法同时测定豆芽中氟喹诺酮类和硝基咪唑类抗生素的残留量
 1
 超高效液相色谱-串联质谱法同时测定水产品中9种有机磷农药残留量
 1
 超高效液相色谱-串联质谱法同时测定水产品中加替沙星、莫西沙星和左氧氟沙星
 1
 超高效液相色谱法测定水产品中3种喹诺酮类药物残留量
 1