搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
铝合金中溶质原子团簇强韧化及其应用的研究进展
          
Research Progress on Solute Atom Cluster Strengthening and Toughening in Aluminum Alloys and Its Application

摘    要
溶质原子团簇是指合金中几个到几十个溶质原子的无序聚集。作为时效析出序列的重要一环,溶质原子团簇不仅可以通过调控铝合金时效析出行为而改善显微组织,而且可以有效地改善合金的力学性能。对铝合金中溶质原子团簇的表征方法、强韧化调控机制及其在铝合金中的典型应用等几个方面进行了综述,对溶质原子团簇未来的研究方向进行了展望。
标    签 溶质原子团簇   铝合金   强韧化   显微组织   solute atom cluster   aluminum alloy   strengthening and toughening   microstructure  
 
Abstract
Solute atomic clusters are disordered agglomeration of a few to dozens of solute atoms in an alloy. As an important part of aging precipitation sequence, solute atomic clusters can not only regulate aging precipitation behavior of aluminum alloys to improve the microstructure, but also effectively improve the mechanical properties of the alloy. The characterization methods of solute atomic clusters in aluminum alloys, the regulation mechanism of strengthening and toughening, and their typical applications in aluminum alloys are reviewed. The future research direction of solute atomic clusters is prospected.

中图分类号 TG146.21   DOI 10.11973/jxgccl202305013 

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(金属材料强韧均衡)

基金项目 国家自然科学基金资助项目(52071253,51790482,52001249,52271115);高等学校学科创新引智计划项目(BP0618008)

收稿日期 2023/1/13

修改稿日期 2023/3/30

网络出版日期

作者单位点击查看

备注杨冲(1982-),男,陕西西安人,副教授,博士

引用该论文: YANG Chong,LIU Gang,XUE Hang,ZHANG Peng,ZHANG Jinyu,SUN Jun. Research Progress on Solute Atom Cluster Strengthening and Toughening in Aluminum Alloys and Its Application[J]. Materials for mechancial engineering, 2023, 47(5): 84~93
杨冲,刘刚,薛航,张鹏,张金钰,孙军. 铝合金中溶质原子团簇强韧化及其应用的研究进展[J]. 机械工程材料, 2023, 47(5): 84~93


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SUN W W,ZHU Y M,MARCEAU R,et al.Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity[J].Science,2019,363(6430):972-975.
 
【2】ZHANG Y D, JIN S B, TRIMBY P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion [J]. Acta Materialia, 2019, 162: 19-32.
 
【3】HARDOUIN D O.Alfred Wilm and the beginnings of duralumin[J].International Journal of Materials Research,2022,96(4):398-404.
 
【4】DUMITRASCHKEWITZ P,GERSTL S S A,STEPHENSON L T,et al.Clustering in age-hardenable aluminum alloys[J].Advanced Engineering Materials,2018,20(10):1800255.
 
【5】GRONG O,SHERCLIFF H R.Microstructural modelling in metals processing[J].Progress in Materials Science,2002,47(2):163-282.
 
【6】MYHR O R,GRONG O.Modelling of non-isothermal transformations in alloys containing a particle distribution[J].Acta Materialia,2000,48(7):1605-1615.
 
【7】MYHR O R,GRONG Ö,FJŒR H G,et al.Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing[J].Acta Materialia,2004,52(17):4997-5008.
 
【8】BARDEL D,PEREZ M,NELIAS D,et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy[J].Acta Materialia,2014,62:129-140.
 
【9】HANSEN N.Hall-Petch relation and boundary strengthening[J].Scripta Materialia,2004,51(8):801-806.
 
【10】LOTTER F,PETSCHKE D,DE GEUSER F,et al.In situ natural ageing of Al-Cu-(Mg) alloys:The effect of In and Sn on the very early stages of decomposition[J].Scripta Materialia,2019,168:104-107.
 
【11】DUMITRASCHKEWITZ P,GERSTL S S A,STEPHENSON L T,et al.Clustering in age-hardenable aluminum alloys[J].Advanced Engineering Materials,2018,20(10):1800255.
 
【12】MURAYAMA M, HONO K.Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J].Acta Materialia,1999,47(5):1537-1548.
 
【13】ZHANG P, SHI K K, BIAN J J, et al.Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy[J].Acta Materialia,2021,207:116682.
 
【14】MARTINSEN F A,EHLERS F J H,TORSŒTER M,et al.Reversal of the negative natural aging effect in Al-Mg-Si alloys[J].Acta Materialia,2012,60(17):6091-6101.
 
【15】ENGLER O, MARIOARA C D, ARUGA Y, et al.Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al-Mg-Si alloy AA 6016[J].Materials Science and Engineering:A,2019,759:520-529.
 
【16】POGATSCHER S,ANTREKOWITSCH H,WERINOS M,et al.Diffusion on demand to control precipitation aging:Application to Al-Mg-Si alloys[J].Physical Review Letters,2014,112(22):225701.
 
【17】MARCEAU R K W, SHA G, LUMLEY R N, et al.Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J].Acta Materialia,2010,58(5):1795-1805.
 
【18】MARCEAU R K W, SHA G, FERRAGUT R, et al.Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing[J].Acta Materialia,2010,58(15):4923-4939.
 
【19】MARCEAU R K W, DE VAUCORBEIL A, SHA G, et al.Analysis of strengthening in AA6111 during the early stages of aging:Atom probe tomography and yield stress modelling[J].Acta Materialia,2013,61(19):7285-7303.
 
【20】LIU J Z, HU R, ZHENG J L, et al.Formation of solute nanostructures in an Al-Zn-Mg alloy during long-term natural aging[J].Journal of Alloys and Compounds,2020,821:153572.
 
【21】MEDRANO S,ZHAO H,DE GEUSER F,et al.Cluster hardening in Al-3Mg triggered by small Cu additions[J].Acta Materialia,2018,161:12-20.
 
【22】BAI S, LIU Z Y, YING P Y, et al.Quantitative study of the solute clustering and precipitation in a pre-stretched Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds,2017,725:1288-1296.
 
【23】YANG Z J, JIANG X H, ZHANG X P, et al.Natural ageing clustering under different quenching conditions in an Al-Mg-Si alloy[J].Scripta Materialia,2021,190:179-182.
 
【24】POGATSCHER S. Phase transitions in quenched nonferrous metallic systems [D]. Leoben, Australia: University of Leoben, 2016.
 
【25】ARDELL A J.Precipitation hardening[J].Metallurgical Transactions A,1985,16(12):2131-2165.
 
【26】ESMAEILI S, LLOYD D J, POOLE W J.Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111[J].Acta Materialia,2003,51(12):3467-3481.
 
【27】SHAO D,ZHANG P,ZHANG J Y,et al.Effect of pre-strain on the solute clustering,mechanical properties,and work-hardening of a naturally aged Al-Cu-Mg alloy[J].Metallurgical and Materials Transactions A,2017,48(9):4121-4134.
 
【28】DUTTA I,ALLEN S M.A calorimetric study of precipitation in commercial aluminium alloy 6061[J].Journal of Materials Science Letters,1991,10(6):323-326.
 
【29】KIM S,KIM J,TEZUKA H,et al.Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration[J].Materials Transactions,2013,54(3):297-303.
 
【30】DESCHAMPS A, BASTOW T J, DE GEUSER F, et al.In situ evaluation of the microstructure evolution during rapid hardening of an Al-2.5Cu-1.5Mg (wt.%) alloy[J].Acta Materialia,2011,59(8):2918-2927.
 
【31】SCHLOTH P, MENZEL A, FIFE J L, et al.Early cluster formation during rapid cooling of an Al-Cu-Mg alloy:In situ small-angle X-ray scattering[J].Scripta Materialia,2015,108:56-59.
 
【32】SCHLOTH P,WAGNER J N,FIFE J L,et al.Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle X-ray scattering[J].Applied Physics Letters,2014,105(10):101908.
 
【33】BANHART J,CHANG C S T,LIANG Z Q,et al.Natural aging in Al-Mg-Si alloys: A process of unexpected complexity[J].Advanced Engineering Materials,2010,12(7):559-571.
 
【34】HU R, JIN S B, SHA G.Application of atom probe tomography in understanding high entropy alloys:3D local chemical compositions in atomic scale analysis[J].Progress in Materials Science,2022,123:100854.
 
【35】CHEN B A, LIU G, WANG R H, et al.Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys[J].Acta Materialia,2013,61(5):1676-1690.
 
【36】YANG C, CAO L F, GAO Y H, et al.Nanostructural Sc-based hierarchy to improve the creep resistance of Al-Cu alloys[J].Materials & Design,2020,186:108309.
 
【37】WU S H,SOREIDE H S,CHEN B,et al.Freezing solute atoms in nanograined aluminum alloys via high-density vacancies[J].Nature Communications,2022,13:3495.
 
【38】YANG C, ZHANG P F, SHAO D, et al.The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition[J].Acta Materialia,2016,119:68-79.
 
【39】GIRIFALCO L A, HERMAN H.A model for the growth of Guinier-Preston zones: The vacancy pump[J].Acta Metallurgica,1965,13(6):583-590.
 
【40】ZUROB H S,SEYEDREZAI H.A model for the growth of solute clusters based on vacancy trapping[J].Scripta Materialia,2009,61(2):141-144.
 
【41】TORSŒTER M,HASTING H S,LEFEBVRE W,et al.The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys[J].Journal of Applied Physics,2010,108(7):073527.
 
【42】MURAYAMA M, HONO K, SAGA M, et al.Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys[J].Materials Science and Engineering:A,1998,250(1):127-132.
 
【43】WERINOS M,ANTREKOWITSCH H,EBNER T,et al.Design strategy for controlled natural aging in Al-Mg-Si alloys[J].Acta Materialia,2016,118:296-305.
 
【44】HARDY H K. The ageing characteristics of ternary aluminium-copper alloys with cadmium, indium or tin [J]. Journal of the Institute of Metals, 1952, 80(9): 483-492.
 
【45】LOTTER F,PETSCHKE D,STAAB T E M,et al.The influence of trace elements (In,Sn) on the hardening process of Al-Cu alloys[J].Physica Status Solidi (a),2018,215(11):1800038.
 
【46】HOMMA T,MOODY M P,SAXEY D W,et al.Effect of Sn addition in preprecipitation stage in Al-Cu alloys:A correlative transmission electron microscopy and atom probe tomography study[J].Metallurgical and Materials Transactions A,2012,43(7):2192-2202.
 
【47】HONMA T,SAXEY D W,RINGER S P.Effect of trace addition of Sn in Al-Cu alloy[J].Materials Science Forum,2006,519/520/521:203-208.
 
【48】AKOPYAN T K,SHURKIN P K,LETYAGIN N V,et al.Structure and precipitation hardening response in a cast and wrought Al-Cu-Sn alloy[J].Materials Letters,2021,300:130090.
 
【49】BOURGEOIS L,NIE J F,MUDDLE B C.Assisted nucleation of θ' phase in Al-Cu-Sn:The modified crystallography of tin precipitates[J].Philosophical Magazine,2005,85(29):3487-3509.
 
【50】LIU M, ZHANG X, KÖRNER B, et al.Effect of Sn and In on the natural ageing kinetics of Al-Mg-Si alloys[J].Materialia,2019,6:100261.
 
【51】ZHENG Z Q, LIU W Q, LIAO Z Q, et al.Solute clustering and solute nanostructures in an Al-3.5Cu-0.4Mg-0.2Ge alloy[J].Acta Materialia,2013,61(10):3724-3734.
 
【52】BUHA J,LUMLEY R N,CROSKY A G,et al.Secondary precipitation in an Al-Mg-Si-Cu alloy[J].Acta Materialia,2007,55(9):3015-3024.
 
【53】LI K,BÉCHÉ A,SONG M,et al.Atomistic structure of Cu-containing β″ precipitates in an Al-Mg-Si-Cu alloy[J].Scripta Materialia,2014,75:86-89.
 
【54】ARGON A.Strengthening mechanisms in crystal plasticity[M].Oxford:Oxford University Press,2007.
 
【55】VANNARAT S,SLUITER M H F,KAWAZOE Y.First-principles study of solute-dislocation interaction in aluminum-rich alloys[J].Physical Review B,2001,64(22):224203.
 
【56】LEYSON G P M,CURTIN W A,HECTOR L G,et al.Quantitative prediction of solute strengthening in aluminium alloys[J].Nature Materials,2010,9(9):750-755.
 
【57】NIE J F, MUDDLE B C.Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates[J].Acta Materialia,2008,56(14):3490-3501.
 
【58】LIU G, ZHANG G J, DING X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Materials Science and Engineering: A, 2003, 344(1/2): 113-124.
 
【59】LIU G, ZHANG G J, WANG R H, et al.Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys[J].Acta Materialia,2007,55(1):273-284.
 
【60】STARINK M J, CAO L F, ROMETSCH P A.A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys[J].Acta Materialia,2012,60(10):4194-4207.
 
【61】YANG C,CHENG P M,CHEN B A,et al.Solute clusters-promoted strength-ductility synergy in Al-Sc alloy[J].Journal of Materials Science & Technology,2022,96:325-331.
 
【62】MARIOARA C D, ANDERSEN S J, JANSEN J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy[J].Acta Materialia,2003,51(3):789-796.
 
【63】BODUNRIN M O,ALANEME K K,CHOWN L H.Aluminium matrix hybrid composites:A review of reinforcement philosophies;mechanical,corrosion and tribological characteristics[J].Journal of Materials Research and Technology,2015,4(4):434-445.
 
【64】ZHANG X P, LIU M, SUN H M, et al.Influence of Sn on the age hardening behavior of Al-Mg-Si alloys at different temperatures[J].Materialia,2019,8:100441.
 
【65】WERINOS M,ANTREKOWITSCH H,KOZESCHNIK E,et al.Ultrafast artificial aging of Al-Mg-Si alloys[J].Scripta Materialia,2016,112:148-151.
 
【66】INOUE K,TAKATA K,ICHITANI K,et al.Vacancy behavior during aging at 50 and 100℃ in Al-Mg-Si alloys with excess Si studied by positron annihilation spectroscopy[J].Materials Transactions,2019,60(11):2255-2259.
 
【67】ABID T, BOUBERTAKH A, HAMAMDA S.Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy[J].Journal of Alloys and Compounds,2010,490(1/2):166-169.
 
【68】POGATSCHER S,ANTREKOWITSCH H,LEITNER H,et al.Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J].Acta Materialia,2011,59(9):3352-3363.
 
【69】WANG S,FAN C Z.Crystal structures of Al2Cu revisited:Understanding existing phases and exploring other potential phases[J].Metals,2019,9(10):1037.
 
【70】HUTCHINSON C R,FAN X,PENNYCOOK S J,et al.On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys[J].Acta Materialia,2001,49(14):2827-2841.
 
【71】BAI S, HUANG T T, XU H, et al.Effects of small Er addition on the microstructural evolution and strength properties of an Al-Cu-Mg-Ag alloy aged at 200℃[J].Materials Science and Engineering:A,2019,766:138351.
 
【72】REICH L, MURAYAMA M, HONO K.Evolution of Ω phase in an Al-Cu-Mg-Ag alloy: A three-dimensional atom probe study[J].Acta Materialia,1998,46(17):6053-6062.
 
【73】XUE H,YANG C,DE GEUSER F,et al.Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering[J].Nature Materials,2023,22(4):434-441.
 
【74】ROFMAN O V, MIKHAYLOVSKAYA A V, KOTOV A D, et al.AA2024/SiC metal matrix composites simultaneously improve ductility and cracking resistance during elevated temperature deformation[J].Materials Science and Engineering:A,2020,790:139697.
 
【75】DAVIES R K, RANDLE V, MARSHALL G J.Continuous recrystallization: Related phenomena in a commercial Al-Fe-Si alloy[J].Acta Materialia,1998,46(17):6021-6032.
 
【76】ZHANG M, LEWIS R J, GIBELING J C.Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy[J].Materials Science and Engineering:A,2021,805:140796.
 
【77】DE LUCA A, SEIDMAN D N, DUNAND D C.Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening[J].Acta Materialia,2020,194:60-67.
 
【78】FARKOOSH A R,DUNAND D C,SEIDMAN D N.Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation[J].Acta Materialia,2022,240:118344.
 
【79】GAO Y H,GUAN P F,SU R,et al.Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance[J].Materials Research Letters,2020,8(12):446-453.
 
【80】GAO Y H,YANG C,ZHANG J Y,et al.Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300℃[J].Materials Research Letters,2019,7(1):18-25.
 
【81】RALSTON K D,BIRBILIS N,CAVANAUGH M K,et al.Role of nanostructure in pitting of Al-Cu-Mg alloys[J].Electrochimica Acta,2010,55(27):7834-7842.
 
【82】LIU M,LIU Z Y,BAI S,et al.Solute cluster size effect on the fatigue crack propagation resistance of an underaged Al-Cu-Mg alloy[J].International Journal of Fatigue,2016,84:104-112.
 
相关信息
   标题 相关频次
 5A06铝合金超薄板交流冷金属过渡焊接头的组织与拉伸性能
 4
 6061铝合金激光填丝焊接接头的组织与力学性能
 4
 7075/6009铝合金层状复合板材的固溶时效热处理工艺
 4
 A6061-T6铝合金经超声表面纳米化后的显微组织和性能
 4
 Al-1.04Mg-0.85Si-0.01Cu铝合金的热压缩变形行为
 4
 变形铝合金显微组织阳极复膜显示技术
 4
 船用5A01铝合金厚板的耐腐蚀性能
 4
 锆对导线用铝合金显微组织及耐热性能的影响
 4
 固溶和时效处理对挤压态6013铝合金显微组织及动态力学行为的影响
 4
 铝合金表面阳极氧化膜缺陷成因分析
 4
 铝合金中厚板焊接接头显微组织及其疲劳损伤
 4
 热挤压对粉末冶金6061铝合金显微组织和抗拉强度的影响
 4
 5083/6063不等厚铝合金双丝CMT角焊接头的组织与性能
 3
 固溶升温速率对Al-10.78Zn-2.78Mg-2.59Cu铝合金组织与性能的影响
 3
 合金元素Mn对铝合金阳极组织与性能的影响
 3
 挤压工艺参数对4032铝合金组织与性能的影响
 3
 近海含SO2环境中高压隔离开关铝合金部件的组织及腐蚀特征
 3
 铝合金搅拌摩擦焊接头微观组织及缺陷的金相表征
 3
 稀土钕对亚共晶铝硅合金组织及性能的影响
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 10.9级M36风电螺栓用钢的低温冲击性能研究现状
 2
 1000-3738(2007)02-0009-04
 2
 102钢的显微组织形态与室温力学性能的关系
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢管在长时服役后组织及拉伸性能的退化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 13MnNiMoNbR与00Cr19Ni10异种钢焊接接头的组织与性能
 2
 15CrMo钢和12Cr1MoV钢的快速金相制样方法
 2