搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
颗粒增强铜基复合材料的研究现状与发展趋势
          
Research Status and Development Trend of Particle Reinforced Copper Matrix Composites

摘    要
铜及铜合金具有优异的导电、导热和延展性,但是较差的力学性能限制了其在工业领域中的进一步应用,而复合化被认为是提升其综合性能的有效途径之一。总结了颗粒增强铜基复合材料常见增强相的选择依据,综述了颗粒增强铜基复合材料的制备方法、影响其性能的关键因素以及性能调控措施,最后结合制备方法中存在的问题对未来研究方向提出了一些新思路。
标    签 颗粒增强铜基复合材料   制备   力学性能   电学性能   particle reinforced copper matrix composite   preparation   mechanical property   electrical property  
 
Abstract
Copper and copper alloys have excellent electrical and thermal conductivity and ductility, but poor mechanical properties limit their further application in industrial fields. Compounding is considered to be one of the effective ways to improve their comprehensive properties. The selection basis of common reinforcing phases for particle reinforced copper matrix composites is summarized. The preparation methods, key factors affecting the performance and the performance control measures of particle reinforced copper matrix composites are reviewed. Finally some new ideas for future research directions are put forward on the basis of the existing problems in preparation.

中图分类号 TB33   DOI 10.11973/jxgccl202305016 

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(金属材料强韧均衡)

基金项目 国家自然科学基金资助项目(52175185);中央军委JCJQ项目(2022-JCJQ-JJ-0112);陕西省国际合作项目(2021KW-23)

收稿日期 2023/2/22

修改稿日期 2023/4/11

网络出版日期

作者单位点击查看

备注郭新风(1991-),女,甘肃兰州人,博士研究生

引用该论文: GUO Xinfeng,JIA Lei,LV Zhenlin,XIE Hui,KONDOH Katsuyoshi. Research Status and Development Trend of Particle Reinforced Copper Matrix Composites[J]. Materials for mechancial engineering, 2023, 47(5): 109~117
郭新风,贾磊,吕振林,谢辉,近藤勝義. 颗粒增强铜基复合材料的研究现状与发展趋势[J]. 机械工程材料, 2023, 47(5): 109~117


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】TAZEGUL O,DYLMISHI V,CIMENOGLU H.Copper matrix composite coatings produced by cold spraying process for electrical applications[J].Archives of Civil and Mechanical Engineering,2016,16(3):344-350.
 
【2】VARO T,CANAKCI A.Effect of the CNT content on microstructure,physical and mechanical properties of Cu-based electrical contact materials produced by flake powder metallurgy[J].Arabian Journal for Science and Engineering,2015,40(9):2711-2720.
 
【3】AKBARPOUR M R,FARVIZI M,KIM H S.Microstructural and kinetic investigation on the suppression of grain growth in nanocrystalline copper by the dispersion of silicon carbide nanoparticles[J].Materials & Design,2017,119:311-318.
 
【4】SATHISKUMAR R,MURUGAN N,DINAHARAN I,et al.Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing[J].Materials Characterization,2013,84:16-27.
 
【5】QIN Y Q, TIAN Y, PENG Y Q, et al. Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites[J]. Journal of Alloys and Compounds, 2020, 848: 156475.
 
【6】LIN H R,GUO X H,SONG K X,et al.Synergistic strengthening effect of tungsten carbide (WC) particles and silicon carbide whiskers (SiCw) on mechanical properties of Cu-Al2O3 composite[J].Journal of Materials Research and Technology,2021,15:2837-2847.
 
【7】ABU-OQAIL A,WAGIH A,FATHY A,et al.Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites[J].Ceramics International,2019,45(5):5866-5875.
 
【8】AKBARPOUR M R.Effects of mechanical milling time on densification,microstructural characteristics and hardness of Cu-SiC nanocomposites prepared by conventional sintering process[J].Materials Chemistry and Physics,2021,261:124205.
 
【9】HUANG B,HISHINUMA Y,NOTO H,et al.Mechanochemical processing of Cu-Y2O3 alloy by MA-HIP for heat sink materials application[J].Fusion Engineering and Design,2019,140:33-40.
 
【10】BAHADOR A,UMEDA J,YAMANOGLU R,et al.Deformation mechanism and enhanced properties of Cu-TiB2 composites evaluated by the in situ tensile test and microstructure characterization[J].Journal of Alloys and Compounds,2020,847:156555.
 
【11】YAO G C,CAO C Z,PAN S H,et al.Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting[J].Journal of Materials Science & Technology,2020,58:55-62.
 
【12】张治国,张蓓,李卫.WC颗粒增强铜的载流摩擦磨损行为[J].材料热处理学报,2016,37(5):17-21. ZHANG Z G,ZHANG B,LI W.Wear behaviors of WC particle reinforced Cu composites under electrical current[J].Transactions of Materials and Heat Treatment,2016,37(5):17-21.
 
【13】MEIJERING J L, DRUYVESTEYN M J. Hardening of metals by internal oxidation[J]. Philips Research Reports, 1947, 2: 260-280.
 
【14】RHINES F, JOHNSON W, ANDERSON W. Rates of high-temperature oxidation of dilute copper alloys[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 147: 205-221.
 
【15】AGHAJANLAN M K, MACMILLAN N H, KENNEDY C R, et al. Properties and microstructure of Lanxid® Al2O3-Al ceramic composites material[J]. Journal of Material Science, 1989,24(2):658-670.
 
【16】IBRAHIM I A,MOHAMED F A,LAVERNIA E J.Particulate reinforced metal matrix composites:A review[J].Journal of Materials Science,1991,26(5):1137-1156.
 
【17】SHEN Z,TWEDDLE D,LAPINGTON M T,et al.Observation of internal oxidation in a 20% cold-worked Fe-17Cr-12Ni stainless steel through high-resolution characterization[J].Scripta Materialia,2019,173:144-148.
 
【18】YAN Z Q,CHEN F,YE F X,et al.Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods[J].International Journal of Minerals,Metallurgy,and Materials,2016,23(12):1437-1443.
 
【19】谢明.喷射沉积内氧化颗粒增强铜基复合材料的制备及其组织性能研究[D].昆明:昆明理工大学,2014. XIE M.Preparation,microstructure and properties of copper matrix composites reinforced by spray deposition internal oxidized particles[D].Kunming:Kunming University of Science and Technology,2014.
 
【20】ZHUO H O,TANG J C,YE N.A novel approach for strengthening Cu-Y2O3 composites by in situ reaction at liquidus temperature[J].Materials Science and Engineering:A,2013,584:1-6.
 
【21】MA Z Y, BI J, LU Y X, et al. Microstructure and interface of the in situ forming TiB2-reinforced aluminum composite[J]. Composite Interfaces, 1993, 1(4): 287-291.
 
【22】YAN Z Q,CHEN F,YE F X,et al.Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods[J].International Journal of Minerals,Metallurgy,and Materials,2016,23(12):1437-1443.
 
【23】SALAHI E,RAJABI A.Fabrication and characterization of copper-alumina nanocomposites prepared by high-energy fast milling[J].Materials Science and Technology,2016,32(12):1212-1217.
 
【24】BISELLI C,MORRIS D G,RANDALL N.Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles[J].Scripta Metallurgical et Materialia,1994,30(10):1327-1332.
 
【25】KIM J S,KUM J W,KANG E H,et al.Microstructure and property of TiB2-dispersed Cu-matrix composites[C]//2006 International Forum on Strategic Technology.Ulsan,Korea (South): IEEE,2007:366-368.
 
【26】DONG S J,ZHOU Y,CHANG B H,et al.Formation of a TiB2-reinforced copper-based composite by mechanical alloying and hot pressing[J].Metallurgical and Materials Transactions A,2002,33(4):1275-1280.
 
【27】YUASA E,MOROOKA T,LAAG R,et al.Microstructural change of Cu-Ti-B powders during mechanical alloying[J].Powder Metallurgy,1992,35(2):120-124.
 
【28】ZOU C L,KANG H J,WANG W,et al.Effect of La addition on the particle characteristics,mechanical and electrical properties of in situ Cu-TiB2 composites[J].Journal of Alloys and Compounds,2016,687:312-319.
 
【29】HAN S J,SEO J,CHOE K H,et al.Fabrication of Al2O3 dispersion strengthened copper alloy by spray in situ synthesis casting process[J].Metals and Materials International,2015,21(2):270-275.
 
【30】SHI H L,WANG X J,ZHANG C L,et al.A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes[J].Journal of Materials Science & Technology,2016,32(12):1303-1308.
 
【31】RASHAD M,PAN F S,HU H H,et al.Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J].Materials Science and Engineering:A,2015,630:36-44.
 
【32】YARTYS V A,LOTOTSKYY M V,AKIBA E,et al.Magnesium based materials for hydrogen based energy storage:Past,present and future[J].International Journal of Hydrogen Energy,2019,44(15):7809-7859.
 
【33】TURAN M E,SUN Y,AKGUL Y,et al.The effect of GNPs on wear and corrosion behaviors of pure magnesium[J].Journal of Alloys and Compounds,2017,724:14-23.
 
【34】LI G,LI M,WANG H X,et al.Dependence of microstructure characteristics and mechanical properties on nanosized SiCp contents in Mg-9Al matrix composites fabricated by ultrasonic-assisted semisolid powder hot pressing[J].Journal of Materials Research,2018,33(18):2689-2699.
 
【35】KAVIMANI V,PRAKASH K S,THANKACHAN T.Experimental investigations on wear and friction behavior of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy[J].Composites Part B:Engineering,2019,162:508-521.
 
【36】SONG Z X,HU X S,XIANG Y Y,et al.Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites[J].Materials Science and Engineering:A,2021,802:140632.
 
【37】GHASALI E,ALIZADEH M,NIAZMAND M,et al.Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route:Comparison between microwave and spark plasma sintering[J].Journal of Alloys and Compounds,2017,697:200-207.
 
【38】OKE S R,IGE O O,FALODUN O E,et al.Powder metallurgy of stainless steels and composites:A review of mechanical alloying and spark plasma sintering[J].The International Journal of Advanced Manufacturing Technology,2019,102(9):3271-3290.
 
【39】RASHAD M,PAN F S,ASIF M,et al.Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J].Journal of Industrial and Engineering Chemistry,2014,20(6):4250-4255.
 
【40】LIAO J S,YAMAMOTO N,NAKATA K.Gas tungsten arc welding of fine-grained AZ31B magnesium alloys made by powder metallurgy[J].Materials & Design,2014,56:460-467.
 
【41】LIAO J S,HOTTA M,MORI Y.Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy[J].Materials Science and Engineering:A,2012,544:10-20.
 
【42】JAYASATHYAKAWIN S,RAVICHANDRAN M,BASKAR N,et al.Mechanical properties and applications of magnesium alloy: Review[J].Materials Today:Proceedings,2020,27:909-913.
 
【43】BAHADOR A,UMEDA J,HAMZAH E,et al.Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles[J].Materials Science and Engineering:A,2020,772:138797.
 
【44】BENJAMIN J S.Dispersion strengthened superalloys by mechanical alloying[J].Metallurgical Transactions,1970,1(10):2943-2951.
 
【45】AGHAMIRI S M S,OONO N,UKAI S,et al.Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application[J].Nuclear Materials and Energy,2018,15:17-22.
 
【46】QIN Y Q,WU Y C,WANG D B,et al.Influence of SiC particle size on the wear properties of SiC/Cu composites[J].Advanced Materials Research,2011,311/312/313:635-639.
 
【47】HUANG F,WANG H,YANG B,et al.Uniformly dispersed Y2O3 nanoparticles in nanocrystalline copper matrix via multi-step ball milling and reduction process[J].Materials Letters,2019,242:119-122.
 
【48】HUANG F,WANG H,CHEN J S,et al.Dry ball milling and wet ball milling for fabricating copper-yttria composites[J].Rare Metals,2018,37(10):859-867.
 
【49】NEUMANN A W,VAN OSS C J,SZEKELY J.Thermodynamics of particle engulfment[J].Kolloid-Zeitschrift Und Zeitschrift Für Polymer,1973,251(6):415-423.
 
【50】CHAWLA K K.Interfaces in metal matrix composites[J].Composite Interfaces,1996,4(5):287-298.
 
【51】SINGH M K,GAUTAM R K.Mechanical and electrical behavior of developed copper based hybrid composites[J].Materials Today:Proceedings,2018,5(2):5692-5700.
 
【52】SINGH M K,YADAV G,GAUTAM R K.Mechanical properties of HSSS chips reinforced copper-based hybrid composites[J].Materials Today:Proceedings,2018,5(9):17012-17020.
 
【53】SINGH M K,GAUTAM R K.Synthesis of copper metal matrix hybrid composites using stir casting technique and its mechanical,optical and electrical behaviors[J].Transactions of the Indian Institute of Metals,2017,70(9):2415-2428.
 
【54】ISLAMGALIEV R K,BUCHGRABER W,KOLOBOV Y R,et al.Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation[J].Materials Science and Engineering:A,2001,319/320/321:872-876.
 
【55】WANG F L,LI Y P,WANG X Y,et al. In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling[J].Journal of Alloys and Compounds,2016,657:122-132.
 
【56】曾巍.原位自生碳化铌增强纳米晶铜基复合材料的制备及其显微组织和性能的研究[D].上海:上海交通大学,2018. ZENG W.A study on fabrication of NbC nanoparticles reinforced nanocrystalline Cu matrix nanocomposites and their microstructure and properties[D].Shanghai:Shanghai Jiaotong University,2018.
 
【57】BAHADOR A,UMEDA J,YAMANOGLU R,et al.Deformation mechanism and enhanced properties of Cu-TiB2 composites evaluated by the in situ tensile test and microstructure characterization[J].Journal of Alloys and Compounds,2020,847:156555.
 
【58】BAHADOR A,UMEDA J,HAMZAH E,et al.Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles[J].Materials Science and Engineering:A,2020,772:138797.
 
【59】张国定.金属基复合材料界面问题[J].材料研究学报,1997,11(6):649-657. ZHANG G D.Interfaces in metal matrix composites[J].Chinese Journal of Material Research,1997,11(6):649-657.
 
【60】刘德宝,崔春翔.不同陶瓷颗粒增强Cu基复合材料的制备及导电性能[C]//第五届中国功能材料及其应用学术会议论文集Ⅲ.北京: 中国仪器仪表学会仪表功能材料学会,2004:198-201. LIU D B, CUI C X. Preparation and conductivity of Cu matrix composites reinforced by different Ceramic particles [C]//Chinese Conference on Functional Materials and Their Applications Ⅲ. Beijing: China Instrument and Meter Society Functional Materials Society, 2004:198-201.
 
【61】WANG G J,MA Y J,CAI Y P,et al.Overcoming the strength-conductivity trade-off dilemma in carbon nanotube/aluminum-copper fibers by diffusion interface and chemical reaction interface[J].Carbon,2019,146:293-300.
 
【62】王爱琴,倪增磊,谢敬佩.颗粒尺寸及分布均匀性对SiC/Al-30Si复合材料组织性能的影响[J].粉末冶金技术,2013,31(1):9-13. WANG A Q,NI Z L,XIE J P.Effects of particle size and its distribution homogenization on the microstructure and mechanical properties of SiC/Al-30Si alloy composite[J].Powder Metallurgy Technology,2013,31(1):9-13.
 
【63】LEWANDOWSKI J J,LIU C,HUNT W H Jr.Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite[J].Materials Science and Engineering:A,1989,107:241-255.
 
【64】郭明星.纳米弥散强化铜合金短流程制备方法及其相关基础问题研究[D].长沙:中南大学,2008. GUO M X.Study on short-process preparation method of nano-dispersion strengthened copper alloy and its related basic problems[D].Changsha:Central South University,2008.
 
【65】汪明朴,贾延琳,李周.先进高强导电铜合金[M].长沙:中南大学出版社,2015. WANG M P,JIA Y L,LI Z.Advanced copper alloy with high strength and conductivity[M].Changsha:Central South University Press,2015.
 
【66】LEI R S,WANG M P.Effect of milling tools on the microstructure and property of Cu-based composites prepared by mechanical alloying[J].Acta Metallurgical Sinical (English Letters),2017,30(12):1155-1162.
 
【67】BAGHERI G A.The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J].Journal of Alloys and Compounds,2016,676:120-126.
 
【68】CELEBI EFE G,ZEYTIN S,BINDAL C.The effect of SiC particle size on the properties of Cu-SiC composites[J].Materials & Design,2012,36:633-639.
 
【69】ZHANG D D,BAI F,SUN L P,et al.Compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites with different particle size and morphology[J].Materials (Basel,Switzerland),2017,10(5):499.
 
【70】SZABLEWSKI J, HAIMANT R. Heat-mechanical treatment for copper alloy[J]. Material Science and Technology, 1985, 1: 1053-1059.
 
【71】XIE J W,ZENG W,ZHOU D S,et al.Microstructure and properties of a nanocrystalline Cu-Al-NbC composite with high strength and good conductivity[J].Materials Letters,2018,214:174-177.
 
【72】CAO M,XIONG D B,TAN Z Q,et al.Aligning graphene in bulk copper:Nacre-inspired nano-laminated architecture coupled with in situ processing for enhanced mechanical properties and high electrical conductivity[J].Carbon,2017,117:65-74.
 
【73】SHEN X X,WU M,JI D M,et al.The mechanical behavior of a layered nanostructured Ni with an alternating growth of ultrafine grains and nano-sized grains fabricated by electrodeposition[J].Materials Science and Engineering:A,2018,713:43-51.
 
【74】LIU H S,ZHANG B,ZHANG G P.Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast[J].Scripta Materialia,2011,65(10):891-894.
 
相关信息
   标题 相关频次
 Ti3SiC2材料的力学性能及抗损伤机制
 3
 0.13BZT-xBS-(0.87-x) PT压电陶瓷的电学性能及其温度稳定性
 2
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1 000 MW核电汽轮机空心螺栓断裂原因分析
 2
 1.25Cr0.5MoSi钢的焊接工艺评定
 2
 1060工业纯铝累积叠轧后的力学性能
 2
 1060铝在累积轧制中组织和性能的演变
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 14NiCrMo10 6V与Q345E钢过渡匹配焊接接头的组织与力学性能
 2
 15Ni3CrMoV与10Ni5CrMoV异种钢对接接头的显微组织及力学性能
 2
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 2
 2 000 t水压机立柱断裂分析
 2
 2024铝合金电子束焊接接头的显微组织与力学性能
 2
 20Cr1Mo1VTiB钢制高温紧固螺栓断裂失效分析
 2
 20Cr钢与B级钢焊接接头的组织和性能
 2
 2195铝锂合金的化学铣切工艺优化
 2
 2205双相不锈钢/Q345低合金钢爆炸复合板的组织与力学性能
 2
 22Mn2SiVBS热轧无缝钢管控冷时的组织与性能
 2
 240 MPa级高强IF钢的冷轧压下率和退火温度
 2
 25Cr2MoVA钢调质规范对力学性能的影响
 2
 2GPa高压处理对铜铝合金显微组织和性能的影响
 2
 300 MW机组锁口叶片断裂原因分析
 2
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 2
 3D打印18Ni300模具钢的显微组织及力学性能
 2
 40CrNi2Mo钢的低温力学性能
 2
 5 mm厚6005A-T6铝合金双轴肩搅拌摩擦焊接头的组织及性能
 2
 5 mm厚6082-T6铝合金双轴肩搅拌摩擦焊接头的组织与性能
 2