扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Inconel625合金激光熔覆过程中显微组织演变的数值模拟
          
Numerical Simulation of Microstructure Evolution of Inconel625 Alloy During Laser Cladding

摘    要
基于MATLAB模拟平台并结合晶粒的形核与生长理论,采用元胞自动机-有限差分方法构建了Inconel625合金激光熔覆层显微组织演变的数值计算模型,利用该模型对单道激光熔覆过程中合金的显微组织演变进行了模拟,并进行了试验验证,同时研究了激光热输入和异质形核数量对熔覆层晶粒形貌的影响。结果表明:采用建立的模型模拟得到熔覆层内部由柱状晶以及分布在柱状晶之间的亚晶粒组成,靠近熔合线区域由胞状晶组成,与试验结果相吻合;模拟和试验得到柱状晶的平均宽度分别为2.817,2.743 μm,相对误差仅为2.69%,验证了计算模型的可靠性;随着激光热输入的减小或异质形核数量的增大,熔覆层组织逐渐细化,晶粒数量增多,柱状晶宽度减小。
标    签 激光熔覆   数值模拟   元胞自动机-有限差分法   Inconel625合金   显微组织   laser cladding   numerical simulation   cellular automata-finite difference method   Inconel625 alloy   microstructure  
 
Abstract
On the basis of the MATLAB simulation platform and the grain nucleation and growth theory, the numerical calculation model of microstructure evolution of laser cladding layer of Inconel625 alloy was constructed by cellular antomata-finite difference method. The microstructure evolution of the alloy during single pass laser cladding was simulated by the model and verified by experiments. The effects of laser heat input and heterogeneous nucleation quantity on the grain morphology of the cladding layer were studied. The results show that according to the established model simulation, the inner part of the cladding layer was composed of columnar crystals and sub-grains distributed between columnar crystals, and the cladding layer near the fusion line consisted of cellular crystals; the simulation was consistent with the test results. The average size of columnar crystals obtained by simulation and test were 2.817, 2.743 μm, respectively, and the relative error was only 2.69%, which verified the reliability of the calculation model. With decreasing laser heat input or increasing heterogeneous nucleation quantity, the microstructure of the cladding layer was gradually refined, the number of grains increased, and the size of the columnar crystals decreased.

中图分类号 TG401   DOI 10.11973/jxgccl202307016

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51974243)

收稿日期 2022/2/15

修改稿日期 2023/2/3

网络出版日期

作者单位点击查看

备注李继红(1973-),男,河南洛阳人,副教授,博士

引用该论文: LI Jihong,GUO Zhao,LI Baoling,ZHANG Min,GUO Yufei,GOU Chuandong. Numerical Simulation of Microstructure Evolution of Inconel625 Alloy During Laser Cladding[J]. Materials for mechancial engineering, 2023, 47(7): 97~103
李继红,郭钊,李保铃,张敏,郭宇飞,苟川东. Inconel625合金激光熔覆过程中显微组织演变的数值模拟[J]. 机械工程材料, 2023, 47(7): 97~103


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】JAVID Y.Multi-response optimization in laser cladding process of WC powder on Inconel 718[J].CIRP Journal of Manufacturing Science and Technology,2020,31:406-417.
 
【2】谭金花,孙荣禄,牛伟,等.Ni60/h-BN含量对激光熔覆钛基复合涂层组织及性能的影响[J].表面技术,2019,48(10):107-115. TAN J H,SUN R L,NIU W,et al.Effect of Ni60/h-BN content on microstructures and properties of laser cladding titanium-based composite coatings[J].Surface Technology,2019,48(10):107-115.
 
【3】LIANG C J,WANG C L,ZHANG K X,et al.Nucleation and strengthening mechanism of laser cladding aluminum alloy by Ni-Cr-B-Si alloy powder based on rare earth control[J].Journal of Materials Processing Technology,2021,294:117145.
 
【4】高秋实,闫华,秦阳,等.钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层[J].材料研究学报,2018,32(12):921-928. GAO Q S,YAN H,QIN Y,et al.Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding[J].Chinese Journal of Materials Research,2018,32(12):921-928.
 
【5】LIU H F,TAN C K I,WEI Y F,et al.Laser-cladding and interface evolutions of Inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments[J].Surface and Coatings Technology,2020,404:126607.
 
【6】VERDI D,GARRIDO M A,MÚNEZ C J,et al.Microscale effect of high-temperature exposition on laser cladded Inconel 625-Cr3C2 metal matrix composite[J].Journal of Alloys and Compounds,2017,695:2696-2705.
 
【7】ZHANG B C,BI G J,WANG P,et al.Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM[J].Materials & Design,2016,111:70-79.
 
【8】张敏,黄超,郭宇飞,等.TC4合金焊接熔池微观组织演变的数值模拟与分析[J].中国有色金属学报,2020,30(8):1876-1886. ZHANG M,HUANG C,GUO Y F,et al.Numerical simulation and analysis of microstructure evolution of TC4 alloy weld pool[J].The Chinese Journal of Nonferrous Metals,2020,30(8):1876-1886.
 
【9】郭钊,周建新,沈旭,等.改进元胞自动机法数值模拟高温合金凝固过程枝晶生长行为[J].机械工程材料,2020,44(2):65-72. GUO Z,ZHOU J X,SHEN X,et al.Numerical simulation of dendritic growth behavior in solidification of superalloy by an improved cellular automaton method[J].Materials for Mechanical Engineering,2020,44(2):65-72.
 
【10】党元晓,祁文军,芦丽丽.激光熔覆技术数值模拟研究现状及发展趋势[J].热加工工艺,2016,45(6):23-27. DANG Y X,QI W J,LU L L.Research status and development trend of numerical simulation of laser cladding technology[J].Hot Working Technology,2016,45(6):23-27.
 
【11】TAN W D,WEN S Y,BAILEY N,et al.Multiscale modeling of transport phenomena and dendritic growth in laser cladding processes[J].Metallurgical and Materials Transactions B,2011,42(6):1306-1318.
 
【12】SHIMONO Y, OBA M, NOMOTO S, et al. Numerical simulation of solidification in additive manufacturing of Ti alloy by multi-phase field method[C]//Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.[S.l.]:University of Texas at Austin, 2017:1048-1057.
 
【13】ACHARYA R,SHARON J A,STAROSELSKY A.Prediction of microstructure in laser powder bed fusion process[J].Acta Materialia,2017,124:360-371.
 
【14】孙道金,刘继常,李钦栋.激光熔覆纯镍熔池底部组织生长的相场法模拟[J].中国激光,2013,40(4):0403005. SUN D J,LIU J C,LI Q D.Phase-field method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding[J].Chinese Journal of Lasers,2013,40(4):0403005.
 
【15】刘朝阳,齐欢.镍基单晶高温合金激光多道搭接熔覆过程晶体生长行为和微观组织分布的研究[J].电加工与模具,2014(1):41-46. LIU Z Y,QI H.Study of crystal growth and microstructure formation in multi-track laser powder deposition of nickel-base single crystal superalloy[J].Electromachining & Mould,2014(1):41-46.
 
【16】PAVELIC V,TANBAKUCHI R,UYEHARA O A. Experiment and computed temperature histories in gas tungsten-arc welding of thin plates[J].Welding Journal,1969,48(7):295-305.
 
【17】李露露.基于元胞自动机法的Fe-C合金焊缝熔池凝固过程微观组织模拟[D].西安:西安理工大学,2016. LI L L.Simulation on solidification microstructure of Fe-C binary alloy in weld pool using cellular automaton method[D].Xi'an:Xi'an University of Technology,2016.
 
【18】潘小勇. 流体力学与传热学[M]. 南昌:江西高校出版社, 2019:362. PAN X Y. Fluid mechanics and heat transfer[M]. Nanchang:Jiangxi University and Colleges Press,2019:362.
 
【19】RAPPAZ M,THÉVOZ P H.Solute diffusion model for equiaxed dendritic growth:Analytical solution[J].Acta Metallurgica,1987,35(12):2929-2933.
 
【20】TSAI D C,HWANG W S.Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model[J].Transactions of Nonferrous Metals Society of China,2010,20(6):1072-1077.
 
【21】ZHU M,STEFANESCU D.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J].Acta Materialia,2007,55(5):1741-1755.
 
【22】邓小虎.金属热变形及焊缝凝固过程的元胞自动机模拟[D].大连:大连理工大学,2009. DENG X H.Modeling of metal hot deformation and weld solidification process using cellular automaton method[D].Dalian:Dalian University of Technology,2009.
 
【23】LI D M,LI R,ZHANG P W.A cellular automaton technique for modelling of a binary dendritic growth with convection[J].Applied Mathematical Modelling,2007,31(6):971-982.
 
【24】陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:15-66. TAO W Q.Numerical heat transfer theory[M].Xi'an:Xi'an Jiaotong University Press,1988:15-66.
 
【25】齐海波,张云浩,冯校飞,等.多元合金激光增材制造凝固组织演变模拟[J].焊接学报,2020,41(5):71-77. QI H B,ZHANG Y H,FENG X F,et al.Simulation of solidification microstructure evolution in laser addition manufacturing of multicomponent alloy[J].Transactions of the China Welding Institution,2020,41(5):71-77.
 
【26】周京.Inconel601H镍基合金焊缝化学法晶粒细化的研究[D].天津:河北工业大学,2015. ZHOU J.A study on chemical method of grain refinement of Inconel601H nickel based alloy weld[D].Tianjin:Hebei University of Technology,2015.
 
相关信息
   标题 相关频次
 X80管线钢用自保护药芯焊丝的研制及焊接接头性能
 6
 不同焊接方法下20Mn23Al无磁钢焊接接头的显微组织与性能
 6
 焊丝药粉中镍铬质量比对双相不锈钢焊缝显微组织与力学性能的影响
 6
 CaCO3含量对自保护药芯焊丝脱渣性的影响
 5
 D406A钢和20钢异质接头的显微组织和力学性能
 5
 高温运行后12Cr1MoV钢焊接接头的显微组织和力学性能
 5
 35CrMo钢表面铁基激光熔覆层的组织和耐磨性能
 4
 AlSi7Mg铝合金表面激光熔覆WC增强镍基合金熔覆层的组织与性能
 4
 Ni60合金包覆WC粉激光熔覆涂层的组织与性能
 4
 Q345B低碳钢/20Mn23Al无磁钢异种钢焊接接头的组织及性能
 4
 补焊次数对30CrMnSiA钢接头组织和力学性能的影响
 4
 超低碳微合金管线钢焊接接头的组织与冲击性能
 4
 超声冲击对30CrMnSiNi2A钢补焊接头显微组织和性能的影响
 4
 改进元胞自动机法数值模拟高温合金凝固过程枝晶生长行为
 4
 工艺参数对铝青铜表面激光熔覆镍基合金温度场的影响
 4
 焊前和焊后调质处理下25Cr2Ni4MoV钢焊接接头的组织及性能
 4
 激光功率对WC增强Ni35合金激光熔覆层组织与性能的影响
 4
 激光熔覆FeCrB/NiCrB合金涂层的摩擦磨损与抗冲击性能
 4
 镍包SiCp增强Ni35合金激光熔覆层的显微组织及摩擦磨损性能
 4
 球墨铸铁表面激光熔覆铁基合金层的组织与性能
 4
 热处理前后镍基高温合金激光熔覆层的组织和力学性能
 4
 一种锰镍钼硼合金系埋弧焊丝焊接低碳贝氏体钢接头的组织及性能
 4
 CeO2加入含量对激光熔覆WC增强镍基合金涂层组织与性能的影响
 3
 CeO2添加量对激光熔覆TiB2-TiC/Ni复合涂层组织和性能的影响
 3
 NAK80模具钢表面激光熔覆钴基合金涂层的组织和摩擦磨损性能
 3
 X100管线钢焊接接头的显微组织和性能
 3
 X100管线钢埋弧焊焊接接头的组织特征
 3
 超低碳贝氏体钢埋弧焊焊缝金属的组织与力学性能
 3
 大型原油储罐用12MnNiVR钢板的组织和性能
 3
 焊接热输入对自保护药芯焊丝焊接X80管线钢接头组织和性能的影响
 3