搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
X80管线钢在三种土壤模拟溶液中的微生物腐蚀规律
          
Microbiological Corrosion Rules of X80 Pipeline Steel in Three Simulated Soil Solutions

摘    要
在含硫酸盐还原菌(SRB)的鹰潭、沈阳、大港土壤模拟溶液中进行14 d的挂片浸泡试验和电化学试验, 研究了X80管线钢在三种土壤模拟溶液中的微生物腐蚀规律。结果表明: X80钢在大港土壤模拟溶液中的腐蚀速率最大, 在鹰潭土壤模拟溶液中的最小, SRB和Cl-的共同作用可促进X80钢表面点蚀坑的形成; X80钢在上述三种土壤模拟溶液中的腐蚀过程相同, 阴极过程是以氢去极化为主的控制过程, 阳极过程为金属溶解, 生成黄色疏松的腐蚀产物FeO(OH), 同时Fe2+与SRB结合生成铁硫化合物; 鹰潭土壤的pH较低, 可抑制水解反应;在大港土壤模拟溶液中生成的腐蚀产物中未检测出FeS, 这是体系中少量SRB参与氢去极化过程的结果。
标    签 X80管线钢   土壤模拟溶液   硫酸盐还原菌   微生物腐蚀   X80 pipeline steel   simulated soil solution   sulfate-reducing bacteria (SRB)   mocrobiological corrosion  
 
Abstract
Immersion test for 14 days and electrochemical test were carried out in Yingtan, Shenyang and Dagang simulated soil solutions with sulfate-reducing bacteria(SRB), the microbiological corrosion rules of X80 steel in the three simulated soil solutions were studied. The results show that the corrosion rates of X80 steel in Dagang simulated soil solution was maximum, and the corrosion rate in Yingtan simulated soil solution was minimum. The combined action of SRB and Cl- promoted the formation of pits on X80 steel surface. The corrosion process of X80 steel in three simulation soil solutions was the same, the cathodic process was predominantly controlled by hydrogen reduction, the anodic dissolution generated the yellow loose corrosion products FeO(OH), and Fe2+ with SRB produced iron sulfur compounds. The hydrolysis reaction was inhibited in Yingtan soil with a lower pH. Due to the corrosion process was controlled by cathodic reduction, therefore FeS did not detect in corrosion products formed in Dagang simulated soil solution.

中图分类号 TG172.4   DOI 10.11973/jxgccl201605011

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及其应用

基金项目 国家自然科学基金资助项目(51574147); 辽宁省教育厅重点实验室基础研究项目(LZ2014027)

收稿日期 2015/3/17

修改稿日期 2016/1/28

网络出版日期

作者单位点击查看

备注王丹(1984-), 女, 辽宁丹东人, 讲师, 博士。

引用该论文: WANG Dan,XIE Fei,WU Ming,SUN Dong-xu,ZHAO Qi-hui,CHENG Long-sheng. Microbiological Corrosion Rules of X80 Pipeline Steel in Three Simulated Soil Solutions[J]. Materials for mechancial engineering, 2016, 40(5): 57~61
王丹,谢飞,吴明,孙东旭,赵启慧,程龙生. X80管线钢在三种土壤模拟溶液中的微生物腐蚀规律[J]. 机械工程材料, 2016, 40(5): 57~61


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】杨海洋, 黄桂桥, 张波, 等. 实海环境碳钢的微生物腐蚀浅析[J].腐蚀与防护, 2012, 33(8): 712-714.
 
【2】JAVAHERDASHTI R. Impact of sulphate-reducing bacteria on the performance of engineering materials[J].Applied Microbiology and Biotechnology, 2011, 91(6): 1507-1517.
 
【3】ALABBAS F M, WILLIAMSON C, BHOLA S M.Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field[J]. Journal of Materials Engineering and Performance, 2013, 22(11): 3517-3529.
 
【4】LIU J H, LING X, LI S. Study of microbiologically induced corrosion action on A1-6Mg-Zr and A1-6Mg-Zr-Sc[J]. Journal of Rare Earths, 2007, 25: 609-614.
 
【5】SANTANA R J J, SANTANA H F J, GONZALEZ J E. Comparative study of the behavior of AISI 304 SS in a natural seawater hopper, in sterile media and with SRB using electrochemical techniques and SEM[J].Corrosion Science, 2006, 48: 1265-1278.
 
【6】李付绍, 安茂忠, 刘光洲, 等. 硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用[J]. 无机化学学报, 2009, 25(1): 13-18.
 
【7】曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2004: 398-422.
 
【8】ZINKEVICH V, BOGDARINA I, KANG H, et al. Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria[J]. Inernational Biodeterioation & Biodegradation, 1996, 23: 163-172.
 
【9】钱存柔, 黄仪秀.微生物学实验教程[M].北京: 北京大学出版社, 2010.
 
【10】咸洪泉, 郭立忠. 微生物学实验教程[M]. 北京: 高等教育出版社, 2010.
 
【11】李霞, 陈海燕, 李欢园, 等. 厌氧微生物对紫铜腐蚀行为的影响[J]. 腐蚀与防护, 2012, 33(9): 757-760.
 
【12】柳伟, 赵艳亮, 路民旭. SRB和CO2共存环境中X60管线钢腐蚀电化学特征[J]. 物理化学学报, 2008, 24(3): 393-399.
 
【13】贾思洋, 李超, 孙成. 含硫酸盐还原菌污染土壤中Q235钢的宏电池腐蚀研究[J].腐蚀与防护, 2011, 32(12): 954-957.
 
【14】ALABBAS F M, WILLIAMSON C, BHOLA S M. Microbial corrosion in linepipe steel under the influence of a sulfate-reducing consortium isolated from an oil field[J]. Journal of Materials Engineering and Performance, 2013, 22(11): 3517-3529.
 
【15】LI F S, AN M Z, DUAN D X. Corrosion inhibition for stainless steel by a sulfate-reducing bacteria biofilm in seawater[J].International Journal of Minerals, Metallurgy and Materials, 2012, 19(8): 717-725.
 
【16】谢飞, 吴明, 陈旭, 等. SO42-对X80管线钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J]. 中南大学学报(自然科学版), 2013, 44(1): 424-430.
 
【17】ABEDI S S, ABDOLMALEKI A, ADIBI N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline[J]. Engineering Failure Analysis, 2007, 14: 250-261.
 
【18】胥聪敏, 戚东涛, 张瑞峰, 等. X80管线钢在西北盐渍土壤模拟溶液中的电化学腐蚀行为[J]. 机械工程材料, 2009, 33(8): 60-64.
 
相关信息
   标题 相关频次
 库尔勒土壤模拟溶液的pH对X80管线钢电化学腐蚀行为的影响
 8
 X80管线钢在不同pH满洲里土壤模拟溶液中的腐蚀行为
 6
 腐蚀产物膜对X70管线钢焊缝海底腐蚀行为的影响
 6
 腐蚀管道剩余强度的评价方法及剩余寿命预测
 6
 管线钢在含H2S/CO2的NaCl环境中的腐蚀行为
 6
 四种常用管线钢在满洲里土壤模拟溶液中的腐蚀行为
 6
 X80钢及其焊缝组织在酸性土壤中的电化学行为
 5
 硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响
 4
 某油田埋地管道土壤腐蚀的灰色关联分析
 4
 X80钢焊接接头在抚顺地区三种典型介质中的腐蚀行为
 3
 X80钢在新疆不同土壤环境中的氢脆行为
 3
 交流杂散电流密度对X80管线钢腐蚀行为的影响
 3
 0.8设计系数用X80管线钢焊接接头的失效评估曲线
 2
 20钢在北京不同类型土壤模拟溶液中的腐蚀行为
 2
 3种成分中碳合金钢的显微组织及在含Cl-环境下的耐腐蚀性能
 2
 B+M/A复相组织X80大变形管线钢的预应变脆化
 2
 B4C/6061Al复合材料中子吸收板在高温和装卸料模拟工况下的老化行为
 2
 Cl-对X80管线钢在HCO-3溶液中的电化学行为影响
 2
 CO2分压对X80管线钢腐蚀性能的影响
 2
 QLT工艺热处理后X80管线钢的显微组织和力学性能
 2
 SO42-对X80管线钢在酸性红壤模拟溶液中腐蚀行为的影响
 2
 SO2-4对X80管线钢在含Cl-的NaHCO3溶液中点蚀行为影响
 2
 X52输气管道腐蚀失效分析
 2
 X80M管线钢热轧板卷取温度的优化
 2
 X80钢在大港盐碱土模拟溶液中的腐蚀电化学行为
 2
 X80管线钢不同电化学充氢状态下的断裂特性
 2
 X80管线钢的氢脆性能
 2
 X80管线钢第二相粒子溶解及奥氏体晶粒长大行为
 2
 X80管线钢电磁超声残余应力检测精度的影响因素
 2
 X80管线钢焊接粗晶区晶粒长大的动力学模型
 2