搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 新闻资讯 > 科技前沿 > 消息正文
首页 > 新闻资讯 > 科技前沿 > 消息正文
华裔科学家研发出神奇声波镊子可用于生物打印
发布:kittyll   时间:2016/2/3 16:41:53   阅读:1728 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

最近几年3D生物打印技术的进步堪称突飞猛进。事实上,3D生物打印机已经能够使用人体细胞与生物材料的混合物创建复杂的形状——尽管单个细胞的3D打印则完全是另外一回事。幸运的是,日前,美国宾夕法尼亚州立大学的科学家们宣布,他们成功研发出了一种神奇的“声波镊子”——顾名思义,这种镊子完全是由两个声波发生器发出的声波组成的,它可以捕获人类的单个细胞并放入其它地方而不损坏它。

这个有趣的创新刚刚被发布在了该大学的网站上,参与的科学家包括研究负责人、生物工程与力学教授黄竣,以及博士后 Feng Guo、Peng Li和James Lata,研究生Zhangming Mao和Yuchao Chen,前博士后研究员Zhiwei Xie和生物医学工程教授Jian Yang。卡耐基梅隆大学总裁Subra Suresh也参加了这个团队。他们的工作成果出现在了最新一期的美国《国家科学院学报(Proceedings of the National Academy of Sciences)》上。

据研究人员介绍,这种声波镊子本质上是一种工具,科学家们可以用它在3D空间里移动细胞,并构建起非常精确的结构,整个过程不会接触、变形或者标记细胞。“在这个应用中,我们使用表面声波来创建节点以捕获细胞或微粒。”黄竣教授解释说:“我们可以在3D空间中移动细胞或粒子,在两个或三个维度中创建结构。”

这个镊子本身是用两条表面声波发生器发出的声波组成的。当声波发生碰撞时,他们创建的压力场就能够捕获和运送一个粒子或细胞。通过同时移动发生器,该细胞也可以精确地运送。“我们的研究提供了一种独特的方式可以在三个维度上准确地操纵生物细胞,而且不需要任何侵入性接触或生化标记。”Subra Suresh解释说:“这种做法将会在再生医学、神经科学、组织工程、生物制造、癌症转移等领域的应用及实验研究中导致新的可能性。”
 

这项技术最重要的也许不是它能够无伤地捕获细胞,而是非常精确地定位它们的能力。该研究团队称,他们正在一个非常基础的水平上模仿3D生物打印——捡拾细胞并以精确、无创伤的方式用细胞组成3D结构。这是一项非常重要的技术创新,因为细胞间的通讯和细胞与环境之间的相互作用是很难通过3D生物打印来获得。尽管目前这种声波镊子严格意义上并非3D打印机,但是它很有可能导致3D打印领域期待已久的创新的产生。
 

黄竣教授

目前迭代的3D声波镊子已经相当精确,它的垂直放置精度可达每个细胞1微米,水平精度达到2微米。使用该设备,一个10微米的粒子能够以大约每秒2.5微米的速度移动。在使用时其波长和输入功率都是可以调整的,从而为研究人员带来了很大的方便。

黄竣教授称:“3D声波镊子可以通过控制一定数量细胞、细胞间距,并按照预定的几何结构来排列细胞。这就为打印神经元细胞以创造人工神经网络并将其用于神经科学应用或者神经元再生医学提供了一种独特的方法。”

来源:天工社
相关信息
   标题 相关频次
  3D打印在人体器官应用中的重大突破
 2
 3D打印陶瓷材料的成型及研究进展
 2
 3D打印新应用——协助治疗糖尿病
 2
 3D生物打印实用化脚步渐近
 2
 俄科学家称用兽骨进行3D打印有望再生人骨
 2
 科学家首次用声波同时操纵多件物体
 2
 利用3D打印探索蛛丝的力学性能 设计高强度低密度的新材料
 2
  拥有一个大白的梦想还有多遥远?
 1
  “网状的碳”是更快DNA测序的关键
 1
  3D打印又上《Nature》:超细晶粒高强度钛合金3D打印材料
 1
  长沙高新区:3D打印高强铝合金粉末性能达国际先进水平
 1
  美国利用旋转3D打印制造高强度材料
 1
  陶瓷新应用——美国陆军研究3D打印陶瓷防弹衣
 1
  一滴树脂打印一颗牙
 1
 #高分子材料周报#果胶——特殊的天然气水合物抑制剂
 1
 #新能源周报#3D打印、石墨烯、新能源三者合体
 1
 (海量美图)你以为是水墨画?其实它是科学家的X光片!
 1
 ?FDM 3D打印形状记忆聚合物力学性能测试
 1
 ?盘点航空航天领域应用3D打印技术进行生产、修复的情况
 1
 “18项高分子材料重点发展领域” 未来十年之重任!
 1
 “3D打印”航天服出新成果
 1
 “3D打印材料及检测技术”专题报道征稿启事
 1
 “3D打印材料及检测技术”专题报道征稿启事
 1
 “4D打印技术” 材料可按编程变形/图
 1
 “不完美”的完美:Nature报道3D打印抗损伤结构化“超晶体”
 1
 “木头大王”胡良兵最新力作:木头与3D打印的完美结合
 1
 “太空制造”计划在太空中3D打印和装配航天器
 1
 “蚁人”不再是科幻!MIT最新研究,能把任何材料物体缩小1000倍 | Science
 1
 《Acta Mater》这样能更好地3D打印出来等轴晶!
 1
 《AFM》1秒自修复!可伸缩!可3D打印的有机热电体!
 1
 《AFM》1秒自修复!可伸缩!可3D打印的有机热电体!
 1
 《Matter》:首次实现连续纤维增强热固性材料的3D打印
 1
 《MSEA》硅可以防止3D打印7075铝合金的微裂纹!
 1
 《Nature》:3D打印高性能钛铜合金,具有超细等轴晶粒
 1
 《Nature》:实现“不可能”!3D打印微型二氧化硅气凝胶
 1
 《NPE》新篇预告:基于3D打印的桨叶驱动流体并应用于微泵
 1
 《Science》揭示香港中文大学与LLNL 实验室高速纳米3D打印技术,速度快1000倍
 1
 《Soft Matter》:利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
 1
 《自然》《科学》一周(10.19-10.25)材料科学前沿要闻
 1
 《自然·通讯》可再加工的热固性光敏3D打印材料
 1
 《最新3D打印产业综合报告白皮书》出炉!
 1
 【PI研究进展】3D打印聚酰亚胺材料
 1
 【会议预告】QA/QC/研发人员不可错过的LABWorld现场精彩
 1
 【解析】3D打印技术在传统陶瓷领域的应用进展
 1
 【科研】接近最大刚度的最坚固3D打印新板格结构是这个样子的……
 1
 10项可能改变未来医疗的创新科技:即时食品检测、3D打印器官
 1
 2015全球3D打印市场:看专业级设备笑傲江湖
 1
 2015上海3D打印智造高峰论坛演讲嘉宾预告
 1
 2016年HPLC热门话题预测——为什么有效的HPLC分离对于高复杂系统的分析是至关重要的?
 1
 2016年度“增材制造(3D打印)与激光制造”重点专项
 1