搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 新闻资讯 > 行业动态 > 消息正文
首页 > 新闻资讯 > 行业动态 > 消息正文
收藏!这些都是材料界的明日之星
发布:lee_9124   时间:2016/9/29 15:03:38   阅读:2636 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter
就像钢铁和塑料带动了制造业的革命,新发现的超级材料都具有非常迷人的性质,以及具备广泛的应用,它们将重塑未来。下面我们盘点一些最有前景的未来超级材料的性质和用途。
 
【空气合金】
 
 
空气合金具有极其低的密度,要比水要轻100倍,并且可以承受超过它们自身20000倍的重量,这使它们成为地球上最轻的固体材料。这种材料同时具有超绝缘性,不仅绝热绝冷,而且隔音效果也非常好。
 
用途:大规模建设、飞船、太空服以及火箭技术。(事实上,NASA已经研发出了一种超薄易弯曲的空气合金,在太空服和火箭技术上可以得到充分应用。)
 
【金属微格】
 
 
 
这种金属材料为立体金属开放式多孔聚合物,其成分中多达99.99%是空气,另外0.01%是相互连接的固体空心管晶格。它是世界上最轻的金属材料,能够像羽毛般轻盈地漂浮在空中接着落地。金属微格在吸收能量的性能上也相当好,无论是经过压缩或扭转,都能反弹回原状。例如将一颗鸡蛋利用金属微格包裹中,从25层的高楼丢下,金属微格可以保护鸡蛋坠地时完好如初。
 
用途:飞机结构、航空学和汽车业。
 
【热电材料】
 
 
热电材料的工作原理
 
热电材料是一种能将电能与热能交互转换的材料,此种材料能够在足够的温差下产生电动势,达到以热生电的现象。热电材料可使废热能转换为电能,可能提高能源效率或作为一种替代能源。天然矿物质黝铜矿和方钴矿都可以作为热电材料,而且制造成本低廉。
 
用途:应用于航天器的能量转换,以及耗能较大的机器,比如汽车、冰箱和CPU散热器等。
 
【超材料】
 
 
 
高度规整的纳米结构
 
是一种尺寸小于光的波长的结构,被设计来散射光线。可以用来散射微波、无线电波和鲜为人知的T-射线。某些超材料具有负的折射率,因此可以利用这个特殊的光学性质制作“超级透镜”用来观察那些尺寸小于显微镜光波波长的材料的特征。
 
用途:隐形斗篷,医用的新T-射线扫描仪,相控阵光学技术可以完美的呈现全息图像。
 
【碳纳米管】
 
 
不同类型的碳纳米管
 
是碳原子组成的长链,它们被在化学上称为最强的化学键sp2键连接在一起,甚至比组成钻石的sp3键都要强。碳纳米管拥有许多突出的物理性质,例如极高的拉伸强度和弹性电子传输(非常适合于电子学应用)。
 
用途:唯一能被用来建造太空电梯的材料。
 
【过渡金属硫化物】
 
 
 
过渡金属硫化物的结构
 
它们具有相当简单的二维结构。钼或钨等过渡金属原子的单排结构(上图黑色),夹在同样薄的硫或硒元素层(上图黄色)之间。过渡金属硫化物非常薄、透明和灵活,是极好的半导体。
 
用途:制作软性电子(可弯曲屏幕)、数字电路、量子通讯,以及能源储存。
 
【透明铝】
 
 
 
在《星际旅行IV:抢救未来》中,斯考特将24世纪的“透明铝”技术带回了20世纪。现在该项技术或许要提早实现了。科学家并没有找到让金属铝变透明的方法,而是开发了一种能达到类似强度的透明铝基陶瓷。这种物质是一种氮氧化铝,硬度是钢铁的3倍多,石英镜片的4倍多,蓝宝石的85%。
 
用途:透明装甲(防弹玻璃)、红外圆顶(太空船/太空站)、摩天楼和驾驶舱。
 
【石墨烯】
 
 
 
是一种由碳原子组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯是世上最薄却也是最坚硬的纳米材料,同时拥有极小的电阻率。因此被期待可以用来发展出更薄、导电速度更快的新一代电子元件或电晶体。
 
用途:从所有科技消费品,到生物工程,再到能量储存(超高效电池)。
 
【锡烯】
 
 
 
将氟原子(黄色)加入单层的锡原子(灰色)就会得到锡烯,边缘(蓝色和红色)的导电性近乎完美。
 
锡烯是石墨烯的“表亲”,由单原子层的锡构成,它的边沿态在室温下可以实现量子自旋霍尔效应。锡烯在常温下能达到100%导电率的超级材料,同时也是一种拓扑绝缘体,在这种材料内,载荷子(如电子)无法到达材料的中心,只能在边缘自由移动。
 
用途:设计更快、更有效的微芯片。


来源:中国腐蚀与防护网
 
相关信息
   标题 相关频次
 #电子材料周报#芯片超材料助力量子计算机发展
 2
 #纳米周报#神奇!石墨烯竟然和大脑碰出“爱情火花”?
 2
 澳洲发布新型石墨烯太阳能加热超材料
 2
 超材料:氧化铝纳米层和石墨烯结合的超高性能轻质材料
 2
 顶刊动态|Nature:7月材料前沿科研成果精选
 2
 基于石墨烯电极的视网膜假体有望为视网膜退化患者带来光明
 2
  “网状的碳”是更快DNA测序的关键
 1
  等离子体宏观制备石墨烯取得突破性进展
 1
  哥廷根大学:石墨烯可提高超分辨率显微镜性能
 1
  国防科大打造史上最薄石墨烯灯泡,有望用于未来手机屏幕和芯片
 1
  加拿大公司在石墨烯橡胶研发获突破
 1
  上海交大报道黑磷制纳米材料 用于神经、血管再生和免疫稳态
 1
  双层-双层转角石墨烯中的关联绝缘态研究获进展
 1
  碳家族再添新成员 由18个原子组成的环碳问世
 1
  我国首个石墨烯国家标准正式发布
 1
  我科学家成功研制超平整石墨烯薄膜
 1
  研究人员利用石墨烯涂层防止管道遭到细菌腐蚀
 1
  中国科学家在单层石墨烯力学性质研究中取得进展
 1
 "它"号称能秒杀OLED?
 1
 #薄膜周报# NASA航天器的新型保温“外衣”
 1
 #薄膜周报#单层二维冰相变研究获进展
 1
 #薄膜周报#厚度低于10nm的尼龙(聚酰胺)滤膜
 1
 #电子材料#首次发现微磁区导电,有望扩展磁存储空间
 1
 #电子材料周报#超晶格设计实现多铁性特征
 1
 #电子材料周报#电子高速公路,想象你的电脑可以被卷起来
 1
 #电子材料周报#浸涂技术开发新型纤维状发光二极管
 1
 #电子材料周报#看电子如何在新材料中“旅行”
 1
 #电子材料周报#史无前例的超导石墨烯薄片
 1
 #电子材料周报#新型电池——钠离子电池
 1
 #电子材料周报#有望实现光通路的硅基超材料
 1
 #国内材料周报#可塑性可调石墨烯类突触器件的实现
 1
 #国内材料周报#首次实现石墨烯单核控制形核和快速生长
 1
 #国内材料周报#自旋量子通道转换“入住”石墨烯分子条带
 1
 #纳米周报# 刷新单分子二极管的最高纪录
 1
 #纳米周报#石墨烯生产新方法,有望实现半价生产
 1
 #纳米周报#源头治理:从光源控制光噪
 1
 #新能源周报#3D打印、石墨烯、新能源三者合体
 1
 #新能源周报#为光伏产业带来革命的新型纳米太阳能电池
 1
 #一周国内材料科研#济南大学研究出用于测定胰岛素的新型生物传感器
 1
 ?揭秘智能可调超材料
 1
 “白色石墨烯”可大幅提升陶瓷材料性能
 1
 “白石墨烯”与石墨烯配对制备超薄电子器件的新方法
 1
 “吃雾”的石墨烯复合材料可减少大气污染
 1
 “氮掺杂石墨烯量子点”可将二氧化碳转成液态燃料
 1
 “钢筋石墨烯”—— 100倍于钢材强度的超级材料面世
 1
 “魔角”石墨烯位居榜首
 1
 “三合一”石墨烯基太赫兹探测器问世
 1
 “石墨烯之父”又发现超级材料:或是半导体的未来
 1
 “水伏学”:水中“捕电”新途径
 1
 “新材料十三五规划”引爆石墨烯基防腐涂料产业
 1