扫一扫 加微信
首页 > 新闻资讯 > 行业动态 > 消息正文
首页 > 新闻资讯 > 行业动态 > 消息正文
长春工业大学高光辉教授课题组在高强度抗溶胀水凝胶取得新进展
发布:blast_k   时间:2019/11/27 14:26:46   阅读:3098 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

随着可穿戴电子设备的飞速发展,人们迫切需要一种可伸缩、可恢复、可导电的材料来满足监测人体运动的需求。目前,导电水凝胶材料因其具有与生物组织类似的导电和机械特性,已成为一种有前途的基体,如医用电极、柔性传感器、电子皮肤等。其中,柔性应变传感器能够精确地将自身形变转化为可记录的电子信号,具有广泛的应用前景。然而,传统的水凝胶基传感器恢复性较差,并且在液体或生理条件下会不可避免地“溶胀”,这极大地破坏了它的机械性能,严重限制了实际应用。因此,开发一种抗溶胀导电水凝胶材料,使其兼具韧性,自恢复性和抗溶胀性能是一项充满挑战性的工作。

针对上述问题,长春工业大学高光辉教授团队受软骨组织致密网络结构启发,成功设计并制备了一种兼具有韧性、自恢复性和抗溶胀性与一体的水凝胶基应变传感器,并系统地研究了其力学性能,抗溶胀性能和应变传感性能的稳定性。

利用丙烯酸(AA)来溶解壳聚糖(CS),并将其引入疏水缔合体系中成功合成HP(AAm/AA)-CS水凝胶。然后将HP(AAm/AA)-CS水凝胶浸泡在FeCl3溶液中,使Fe3+扩散到水凝胶网络中来交联壳聚糖和丙烯酸,最终得到HP(AAm/AA)-CS-Fe3+水凝胶。从而,在水凝胶体系中成功地构建出多重物理相互作用(疏水缔合、配位、氢键、静电等),表现出优异的力学性能和抗溶胀性能。此外,体系中动态离子的存在也赋予了水凝胶优异的导电能力。


图1. HP(AAm/AA)-CS-Fe3+水凝胶的制备过程及形成机理

众所周知,抗肿胀性是水凝胶在生物医学应用如组织工程中的基本要求。通过实验探究发现HP(AAm/AA)-CS-Fe3+水凝胶在不同的溶液环境(H2O、DMSO、生理盐水、海水和不同的pH溶液)下,均具有稳定的抗溶胀性能和机械性能,这将显著拓宽水凝胶的应用范围。值得注意的是,与传统水凝胶不同的是,该水凝胶在水中肿胀后,其机械强度会得到显著提高,在人工软骨应用中具有巨大的潜力。


图2. HP(AAm/AA)-CS和HP(AAm/AA)-CS-Fe3+水凝胶在水中的(a)溶胀图像和(b)溶胀曲线;(c) HP(AAm/AA)-CS-Fe3+水凝胶在不同pH溶液中的溶胀行为;(d)HP(AAm/AA)-CS-Fe3+水凝胶在不同溶液环境下的溶胀行为,包括H2O、DMSO、生理盐水、海水; HP(AAm/AA)-CS-Fe3+水凝胶的力学性能:(e)不同溶胀时间,(f)不同pH条件下溶胀24小时

此外,对HP(AAm/AA)-CS-Fe3+导电水凝胶进行了应变敏感性测试,发现其在不同应变下(小应变(10 - 90%)和大应变(100 - 500%))均表现优异的应变敏感性。值得注意的是, 在连续300次拉伸循环过程中,该水凝胶传感器的电信号没有明显损失,表现出长期稳定性和重复性。


图3.(a)HP(AAm/AA)-CS-Fe3+水凝胶在不同浸泡时间下的导电性能;(b)HP(AAm/AA)-CS-Fe3+水凝胶在不同拉伸应变(0~500%)下的相对电阻变化;(c, d))HP(AAm/AA)-CS-Fe3+水凝胶在小应变(10%-90%)和大应变(100%-500%)反复拉伸时的相对电阻变化;(e)HP(AAm/AA)-CS-Fe3+水凝胶300次循环稳定性试验(最大应变50%)

由于该水凝胶其具有高应变灵敏度、快响应速度、好稳定性等优点,可作为应变传感器快速、准确、重复地监测关节的运动,包括颈部、腕部、肘部和膝盖的活动,甚至可以在水下的监测信号。综上,这种结合了仿生和传感特性的水凝胶将有望成为下一代可植入式电子设备的一个有前景的候选材料。


图4.(a-d)在人体不同部位弯曲条件下的HP(AAm/AA)-CS-Fe3+水凝胶应变传感器的相对电阻变化:(a)颈部、(b)肘关节、(c)手腕、(d)膝关节;(e)HP(AAm/AA)-CS-Fe3+水凝胶应变传感器在水中拉伸时的相对电阻变化;(f) HP(AAm/AA)-CS-Fe3+水凝胶作为触摸屏笔在智能手机屏幕上识别

这一工作以题目为“Cartilage-inspired hydrogel strain sensors with ultrahigh toughness, good self-recovery and stable anti-swelling”的研究论文发表在Journal of Materials Chemistry A杂志上。论文的第一作者为长春工业大学化工学院硕士生徐加俊,通讯作者为高光辉教授,共同通讯作者为任秀艳副教授。

论文链接:https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09170j#!divAbstract

来源:高分子科技

相关信息
   标题 相关频次
 顶刊动态 | Nature子刊/AM/JACS/ACS Nano等生物材料最新学术进展汇总
 2
 哈佛大学锁志刚教授和Robert D. Howe教授课题组合作:应用于软机器的贴附式大变形传感器
 2
 哈佛大学锁志刚教授课题组与西安交大软机器实验室合作研发水凝胶的可降解强韧粘接技术
 2
 吉林大学孙俊奇教授课题组:聚电解质复合物纳米粒子增强增韧的高强度自修复与可循环利用水凝胶
 2
 加州大学洛杉矶分校(UCLA)Ali Khademhosseini教授和张世明博士AFM:水凝胶转印助力开发柔性有机传感器
 2
 快速自恢复、高强度导电水凝胶研制成功 推动柔性电子器件发展
 2
  3D打印在人体器官应用中的重大突破
 1
 #电子材料周报#浸涂技术开发新型纤维状发光二极管
 1
 #电子材料周报#新型电池——钠离子电池
 1
 #电子材料周报#智能传感器,嘈杂中亦可听见声音
 1
 #高分子材料#新突破:更耐用的蛋白质水凝胶
 1
 #高分子材料周报#新型糖蛋白聚合物疫苗
 1
 #国内材料周报#大连理工大学创制结晶性二氧化碳聚合物获得突破
 1
 #纳米周报#源头治理:从光源控制光噪
 1
 “靶向”传感器,超越“质谱技术”的小分子检测
 1
 “人菌大战”又见分晓:新型光学传感器助力人类抗菌工程
 1
 《Chem.Mater.》长春工业大学高光辉团队:在乳液粒子增韧水凝胶方面取得进展
 1
 《Joule》除湿又发电!水凝胶集成铁电半导体从大气湿度中汲取能量
 1
 《Nature》子刊发布水凝胶新成果 “新成员”或成爱美人士福音
 1
 《Research》:中科院深圳先进院揭示离子交联型水凝胶可控三维形变机制
 1
 《Science》刊登CRISPR智能响应水凝胶成果 谭蔚泓院士等评述:可用作生物传感器
 1
 《先进材料》发表福建物构所MOX@MOFs复合高效气敏材料新进展
 1
 《先进功能材料》兰州化物所柔性纸基集成器件研究获进展
 1
 《自然》《科学》一周(7.20-7.26)材料科学前沿要闻
 1
 【创新连线·日本】不对称光折射颠覆光学常识;高强度铝合金氢脆现象或可抑制
 1
 【热点聚焦】超光谱成像及传感器件技术取得最新突破
 1
 120元的国产智能甲醛检测仪问世 采购意向浓厚
 1
 2018年度ASNT创新研究奖:改善结构健康监测的磁致伸缩传感器
 1
 2019年二维材料前沿综述精选
 1
 3D打印高强度壳聚糖水凝胶支架
 1
 3D打印高强度无缺陷马氏体钢技术取得突破,达1.4GPa拉伸强度
 1
 ABS+PC,美军开发出用于FFF 3D打印的高强度多聚物线材
 1
 Adv.Mater.:借助液态金属显著提高软物质强度
 1
 BCAST与肯联铝业研发高强度铝合金 助力汽车轻量化
 1
 CALPHAD辅助设计高强度沉淀强化型高熵合金
 1
 Chem. Mater. | 一种适用于人工皮肤的高韧性自发电水凝胶
 1
 iPhone6S/6S Plus重量增加并非是因为新铝合金材料
 1
 Macromolecules :基于单宁酸的超分子水凝胶的形成
 1
 MIT赵选贺团队揭示抗疲劳水凝胶设计原理
 1
 MIT赵选贺团队研发高性能纯导电聚合物水凝胶
 1
 Nature Communications:低成本、高强度分层纳米结构β-钛合金
 1
 Nature:酶矿化制备具有可调控力学性能的超硬强韧型水凝胶
 1
 Science:“破”而后立——强化玻璃的最佳办法是把它“打碎”?
 1
 Science子刊:西安交大水凝胶3D打印新进展!
 1
 Science子刊:新型水凝胶可阻止和治疗伤口感染
 1
 Science最新综述:工程水凝胶的研究进展
 1
 北海道大学龚剑萍教授团队:自修复水凝胶中的多尺度结构延迟疲劳断裂
 1
 北海道大学龚剑萍教授团队《Adv. Mater. 》:史上最韧材料!
 1
 北海道大学龚剑萍课题组:利用微电极技术研究DN凝胶网络的破坏结构
 1
 北海道大学龚剑萍团队《自然·通讯》:邻位阳离子/苯环序列赋予其水凝胶在海水中强静电粘附作用
 1