Citation: | LI Lei, WANG Juan. Research Progress of Cold-sprayed MCrAlY Coatings[J]. Corrosion & Protection, 2017, 38(8): 625-630. DOI: 10.11973/fsyfh-201708011 |
[1] |
EVANS A G,MUMM D R,HUTCHINSON J W,et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(5):505-553.
|
[2] |
WRIGHT P K,EVANS A G. Mechanisms governing the performance of thermal barrier coatings[J]. Current Opinion in Solid State and Materials Science,1999,4(3):255-265.
|
[3] |
BRINDLEY W J. Thermal barrier coatings[J]. Journal of Thermal Spray Technology,1996,5(4):379-380.
|
[4] |
STRANGMAN T,RAYBOULD D,JAMEEL A,et al. Damage mechanisms,life prediction,and development of EB-PVD thermal barrier coatings for turbine airfoils[J]. Surface and Coatings Technology,2007,202(4):658-664.
|
[5] |
ZHANG Q,LI C J,LI Y,et al. Thermal failure of nanostructured thermal barrier coatings with cold-sprayed nanostructured NiCrAlY bond coat[J]. Journal of Thermal Spray Technology,2008,17(5/6):838-845.
|
[6] |
AHMANIEMI S,VUORISTO P,MÄNTYLÄ T,et al. Thermal cycling resistance of modified thick thermal barrier coatings[J]. Surface and Coatings Technology,2005,190(2):378-387.
|
[7] |
BOSE S,MASI-MARCIN D J. Thermal barrier coating experience in gas turbine engines at Pratt & Whitney[J]. Journal of Thermal Spray Technology,1997,6(1):99-104.
|
[8] |
LEVI C G. Emerging materials and processes for thermal barrier systems[J]. Current Opinion in Solid State and Materials Science,2004,8(1):77-91.
|
[9] |
HSUEH C H,FULLER E R. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings[J]. Scripta Materialia,2000,42(8):781-787.
|
[10] |
TANG F,SCHOENUNG J M. Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces[J]. Scripta Materialia,2005,52(9):905-909.
|
[11] |
RABIEI A,EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia,2000,48(15):3963-3976.
|
[12] |
SCHLICHTING K W,PADTURE N P,JORDAN E H,et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering:A,2003,342(1):120-130.
|
[13] |
ZHANG Q,LI C J,LI C X,et al. Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying[J]. Surface and Coatings Technology,2008,202(14):3378-3384.
|
[14] |
MATSUMOTO M,HAYAKAWA K,KITAOKA S,et al. The effect of preoxidationatmosphere on oxidation behavior and thermal cycle life of thermal barrier coatings[J]. Materials Science and Engineering:A,2006,441(1):119-125.
|
[15] |
TEIXEIRA V,ANDRITSCHKY M,FISCHER W,et al. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings[J]. Surface and Coatings Technology,1999,120:103-111.
|
[16] |
GIL A,SHEMET V,VASSEN R,et al. Effect of surface condition on the oxidation behavior of MCrAlY coatings[J]. Surface and Coatings Technology,2006,201(7):3824-3828.
|
[17] |
PANT B K,ARYA V,MANN B S. Development of low-oxide MCrAlY coatings for gas turbine applications[J]. Journal of Thermal Spray Technology,2007,16(2):275-280.
|
[18] |
杜仲,王全胜,柳彦博,等. 真空预氧化处理对热障涂层静态氧化行为的影响[J]. 航空材料学报,2015,35(5):27-31.
|
[19] |
LI Y,LI C J,YANG G J,et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying[J]. Surface and Coatings Technology,2010,205(7):2225-2233.
|
[20] |
HARDWICKE C U,LAU Y C. Advances in thermal spray coatings for gas turbines and energy generation:a review[J]. Journal of Thermal Spray Technology,2013,22(5):564-576.
|
[21] |
张新格,邓畅光,邓春明,等. NiCrAlY涂层抗氧化性及氧化过程中的微观结构演变[J]. 航空材料学报,2015,35(5):21-26.
|
[22] |
ALKHIMOV A P,KOSAREV V F,PAPYRIN A N. A method of cold gas-dynamic spraying[J]. Doklady Akademii Nauk SSSR,1990,315(5):1062-1065.
|
[23] |
PAPYRIN A. Cold spray technology[J]. Advanced Materials & Processes,2001,159(9):49-51.
|
[24] |
周香林,张济山,巫湘坤,等. 先进冷喷涂技术与应用[M]. 北京:机械工业出版社,2011:2-5.
|
[25] |
张文毓. 冷喷涂技术应用现状与展望[J]. 全面腐蚀控制,2015(2):17-21.
|
[26] |
卢静,王光华,黄乐之,等. 冷喷涂制备防腐涂层研究现状[J]. 表面技术,2016,45(9):88-94.
|
[27] |
李相波,王静,王佳,等. 冷喷涂NiCoCrAlY涂层的微观性能研究[J]. 科技导报,2008,26(4):56-59.
|
[28] |
张强,杨冠军,李长久,等. 冷喷涂纳米结构NiCrAlY涂层在氩气气氛中的氧化行为[J]. 中国表面工程,2008,21(6):5-9.
|
[29] |
张林伟,王鲁,王全胜,等. 真空预氧化对冷喷涂NiCoCrAlY涂层氧化行为的影响[J]. 材料工程,2014(1):1-5.
|
[30] |
张林伟,王鲁,王全胜,等. 真空预氧化对冷喷涂CoNiCrAIY涂层组织及热腐蚀性能的影响[J]. 材料工程,2013(4):12-16.
|
[31] |
张林伟,王鲁,王全胜,等. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程,2016,44(11):45-50.
|
[32] |
RICHER P,ZUNIGA A,YANDOUZI M,et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying[J]. Surface and Coatings Technology,2008,203(3):364-371.
|
[33] |
RICHER P,YANDOUZI M,BEAUVAIS L,et al. Oxidation behavior of CoNiCrAlY bond boats produced by plasma,hvof and cold gas dynamic spraying[J]. Surface and Coatings Technology,2010,204(24):3962-3974.
|
[34] |
BORCHERS C,STOLTENHOFF T,HAHN M,et al. Strain-induced phase transformation of MCrAlY[J]. Advanced Engineering Materials,2015,17(5):723-731.
|
[35] |
LEE K I,OGAWA K. Improved deposition efficiency of cold-sprayed CoNiCrAlY with pure Ni coatings and its high-temperature oxidation behavior after pre-treatment in low oxygen partial pressure[J]. Materials Transactions,2014,55(9):1434-1439.
|
[36] |
CHEN W R,WU X,MARPLE B R,et al. Pre-oxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating[J]. Surface and Coatings Technology,2008,202(16):3787-3796.
|
[37] |
SHIBATA M,KURODA S,WANTANABE M,et al. Microstructure and oxidation of MCrAlY coatings produced by various thermal spray process[C]//Thermal Spray 2007:Building on 100 Years of Success.[S.l.]:[s.n.],2006:15-18.
|
[38] |
LEE D B,KO J H,YI J H. Characterization of oxide scales formed on high-velocity oxyfuel-sprayed Ni-Co-Cr-Al-Y+ReTa coatings[J]. Journal of Thermal Spray Technology,2005,14(3):315-320.
|
[39] |
ZHANG C,LIAO H L,LI W Y,et al. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J]. Journal of Thermal Spray Technology,2006,15(4):598-603.
|
[40] |
ZHANG L W,NING X J,LU L,et al. Hot corrosion behavior of low-pressure cold-sprayed CoNiCrAlY coatings[J]. Journal of Thermal Spray Technology,2016,25(3):587-594.
|
[41] |
SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science,2001,46(1):1-184.
|
[42] |
SURYANARAYANA C. Mechanical alloying and milling[M].[S.n.]:CRC Press,2004,23-42.
|
[43] |
XI S Q,ZHOU J G,WANG X T. Research on temperature rise of powder during high energy ball milling[J]. Powder Metallurgy,2013.
|
[44] |
DELOGU F. A Combined experimental and numerical approach to the kinetics of mechanically induced phase transformations[J]. Acta Materialia,2008,56(4):905-912.
|
[45] |
李勇,张强,李长久,等. 基于冷喷涂MCrAlY粘接层的热障涂层热循环失效的研究[C]//第七届全国表面工程学术会议.[出版地不详]:[出版者不详],2008:105-108.
|
[46] |
LI Y,LI C J,ZHANG Q,et al. Influence of TGO composition on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlY bond coat[J]. Journal of Thermal Spray Technology,2010,19(1/2):168-177.
|
[47] |
MATSUMOTO M,HAYAKAWA K,KITAOKA S,et al. The effect of preoxidation atmosphere on oxidation behavior and thermal cycle life of thermal barrier coatings[J]. Materials Science and Engineering:A,2006,441(1):119-125.
|
[48] |
LI Y,LI C J,YANG G J,et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying[J]. Surface and Coatings Technology,2010,205(7):2225-2233.
|
[49] |
BONADEI A,MARROCCO T. Cold sprayed MCrAlY+X coating for gas turbine blades and vanes[J]. Surface andCoatings Technology,2014,242:200-206.
|
[50] |
LI Y,LI C J,ZHANG Q,et al. Effect of chemical compositions and surface morphologies of MCrAlY coatingon its isothermal oxidation behavior[J]. Journal of Thermal Spray Technology,2011,20(1/2):121-131.
|
[51] |
LEE K I,SATO K,OGAWA K. Mechanical properties and deposition mechanism of cold-sprayed CoNiCrAlY/YSZ cermet[J]. Materials Transactions,2016,57(3):385-391.
|
[52] |
CIZEK J,MATEJKOVA M,KOURIL J,et al. Potential of new-generation electron beam technology in interface modification of cold and HVOF sprayed MCrAlY bond coats[J]. Advances in Materials Science and Engineering,2016,2016:1-6.
|