Citation: | MAO Jiayou, LIU Liang, PU Ding, WANG Xiaona, HUANG Yi. Monitoring Effect of a Novel Electric Resistance-Electrochemistry Sensor on Erosion-Corrosion of Pipeline Steel[J]. Corrosion & Protection, 2021, 42(2): 1-7. DOI: 10.11973/fsyfh-202102001 |
[1] |
吾兰·巴克达什,刘建国,李自力,等. 油气输送管道多相流磨损腐蚀的研究现状与进展[J]. 装备环境工程,2017,14(3):112-116.
|
[2] |
陈静,潘大新,程久欢. 海上天然气管道腐蚀泄漏综合检测与分析[J]. 石油工程建设,2019,45(1):60-65.
|
[3] |
代真,沈士明,丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护[J]. 腐蚀与防护,2007,28(2):86-89.
|
[4] |
袁志坤,王亮,王月玺,等. 卡拉姆卡斯油田注水管线腐蚀原因分析[J]. 全面腐蚀控制,2017,31(12):47-50.
|
[5] |
ZENG L,ZHANG G A,GUO X P. Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corrosion Science,2014,85:318-330.
|
[6] |
AMINUL ISLAM M,FARHAT Z N,AHMED E M,et al. Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel[J]. Wear,2013,302(1/2):1592-1601.
|
[7] |
GUO H X,LU B T,LUO J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel[J]. Electrochimica Acta,2005,51(2):315-323.
|
[8] |
GUO H X,LU B T,LUO J L. Non-Faraday material loss in flowing corrosive solution[J]. Electrochimica Acta,2006,51(25):5341-5348.
|
[9] |
Standard guide for determining synergism between wear and corrosion:ASTM G119-2009(2016)[S].[S.l.]:ASTM International,2016.
|
[10] |
OWEN J,RAMSEY C,BARKER R,et al. Erosion-corrosion interactions of X65 carbon steel in aqueous CO2 environments[J]. Wear,2018,414/415:376-389.
|
[11] |
MALKA R,NEŠIC S,GULINO D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear,2007,262(7/8):791-799.
|
[12] |
SEDANO-DE LA ROSA C,VITE-TORRES M,GODÍNEZ-SALCEDO J G,et al. Erosion-corrosion of X-52 steel pipe under turbulent swirling impinging jets[J]. Wear,2017,376/377:549-556.
|
[13] |
XU Y Z,ZHU Y S,LIU L,et al. The study of the localized corrosion caused by mineral deposit using novel designed multi-electrode sensor system[J]. Materials and Corrosion,2017,68(6):632-644.
|
[14] |
彭欣,王佳,山川,等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报,2012,48(10):1260-1266.
|
[15] |
XU Y Z,TAN M Y. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions[J]. Corrosion Science,2019,151:163-174.
|
[16] |
FAN C L,MCLAURY B S,SHIRAZI S A. Evaluation of electrical resistance probes to detect pipeline erosion and sand production in low liquid loading flow conditions[C]//SPE Eastern Regional Meeting. Columbus,Ohio,USA:Society of Petroleum Engineers,2011:149013.
|
[17] |
XU Y Z,HUANG Y,WANG X N,et al. Experimental study on pipeline internal corrosion based on a new kind of electrical resistance sensor[J]. Sensors and Actuators B:Chemical,2016,224:37-47.
|
[18] |
ORLIKOWSKI J,DAROWICKI K,MIKOLAJSKI S. Multi-sensor monitoring of the corrosion rate and the assessment of the efficiency of a corrosion inhibitor in utility water installations[J]. Sensors and Actuators B:Chemical,2013,181:22-28.
|
[19] |
翁永基. 含沙多相流对金属管道腐蚀-磨损及其监测[J]. 管道技术与设备,2002(4):26-29.
|
[20] |
HUANG H L,TIAN J,ZHANG G A,et al. The corrosion of X52 steel at an elbow of loop system based on array electrode technology[J]. Materials Chemistry and Physics,2016,181:312-320.
|
[21] |
NEVILLE A. An investigation of the corrosion behavior of engineering materials in marine environments[D]. Glassgow,UK:University of Glasgow,1995.
|