• 中国科技论文统计源期刊
  • 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • Scopus数据库全文收录期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
YI Pan, XU Jin, MO Juan, FAN Baozhen, LIU Rui, YANG Zhen, FANG Zhenggang. Effects of High Thermal Conductivity Substances on Corrosion Behavior of Waterborne Epoxy Zinc-Rich Coatings[J]. Corrosion & Protection, 2022, 43(10): 57-62. DOI: 10.11973/fsyfh-202210009
Citation: YI Pan, XU Jin, MO Juan, FAN Baozhen, LIU Rui, YANG Zhen, FANG Zhenggang. Effects of High Thermal Conductivity Substances on Corrosion Behavior of Waterborne Epoxy Zinc-Rich Coatings[J]. Corrosion & Protection, 2022, 43(10): 57-62. DOI: 10.11973/fsyfh-202210009

Effects of High Thermal Conductivity Substances on Corrosion Behavior of Waterborne Epoxy Zinc-Rich Coatings

More Information
  • Received Date: October 14, 2021
  • The effects of high thermal conductivity substances on the corrosion resistance of aqueous epoxy zinc-rich coatings were mainly investigated by electrochemical impedance spectroscopy (EIS). The surface morphology and roughness of the samples after EIS test were analyzed by 3D laser microscopy. The protective performance of coatings containing different amounts of high thermal conductivity substances was further analyzed by salt spray test. The results showed that when the addition amount of high thermal conductivity material was 1%-4%, the porosity of the coating was low, and the coating had excellent impermeability at the initial stage of immersion. The coating with 8% high thermal conductivity material had relatively high porosity, low impedance value, high roughness and poor protection performance. The coating with 1% high thermal conductivity material had the most excellent anti-corrosion performance.
  • [1]
    陈梓坚.配网自动化建设对供电可靠性影响[J].电工技术, 2020(22):80-82.
    [2]
    解立新.县级供电企业配网自动化[J].农村电气化, 2011(2):19-20.
    [3]
    李运德, 王炳志, 常道阳.变压器和高压开关设备防腐涂层体系设计[J].涂料技术与文摘, 2014, 35(6):20-23, 33.
    [4]
    俞高波, 戴军, 楼致远.涂装技术在电力变压器涂装体系中的应用[J].现代涂料与涂装, 2018, 21(12):49-52, 61.
    [5]
    李明哲, 黄正宏, 康飞宇.挥发性有机物的控制技术进展[J].化学工业与工程, 2015, 32(3):2-9.
    [6]
    应勇, 刘富家.变压器绕组热点温度在线测量方法的研究[J].东北电力技术, 2002, 23(9):17-19.
    [7]
    丁玉琴, 张乔根, 高萌, 等.油浸式配电变压器分布式热路模型[J].高电压技术, 2019, 45(3):968-974.
    [8]
    陈小燕, 张良均, 陈刚, 等.电气石在钢结构水性重防腐涂料中的应用[J].电镀与涂饰, 2018, 37(18):811-817.
    [9]
    周强, 潘梦雅, 张曦霞, 等.双组分水性环氧防腐蚀涂料的研制及其在钢表面的应用[J].材料保护, 2018, 51(12):77-81.
    [10]
    孙国鹏.水性环氧重防腐涂料的制备与研究[D].南昌:南昌航空大学, 2019.
    [11]
    陈中华, 曾明, 李亮, 等.纳米材料改性水性环氧防腐涂料研究进展[J].化工新型材料, 2021, 49(5):34-38.
    [12]
    莫娟, 徐金, 樊宝珍, 等.变压器防腐涂层导热性能提升技术研究[J].科技导报, 2021, 39(17):91-98.
    [13]
    张鉴清.富锌涂层的电化学阻抗谱特性[J].中国腐蚀与防护学报, 1996, 16(3):175-180.
    [14]
    LIU G J, ZHANG Y S, WU M, et al. Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits[J].Construction and Building Materials, 2017, 157:357-362.
    [15]
    PAN Y C, WEN Y, ZHANG R, et al. Electrochemical and SERS spectroscopic investigations of 4-methyl-4H-1, 2, 4-triazole-3-thiol monolayers self-assembled on copper surface[J].Applied Surface Science, 2012, 258(8):3956-3961.
    [16]
    FAYSAL F E, EL-SADIG M, ZOHEIR F, et al. Interpreting the passivation of HSLA steel from electrochemical corrosion investigations in bicarbonate-oil aqueous emulsions[J]. Int. J. Electrochem Sci, 2013(8):3026-3038.
    [17]
    EL-EGAMY S S, BADAWAY W A. Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions[J].Journal of Applied Electrochemistry, 2004, 34(11):1153-1158.
    [18]
    YI P, DONG C F, ZHANG T Y, et al. Effect of plasma electrolytic nitriding on the corrosion behavior and interfacial contact resistance of titanium in the cathode environment of proton-exchange membrane fuel cells[J].Journal of Power Sources, 2019, 418:42-49.
    [19]
    YE C Q, HU R G, DONG S G, et al. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions[J].Journal of Electroanalytical Chemistry, 2013, 688:275-281.
    [20]
    ARRABAL R, MINGO B, PARDO A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution[J].Corrosion Science, 2013, 73:342-355.
    [21]
    YI P, DONG C F, XIAO K, et al. In-situ investigation of the semiconductive properties and protective role of Cu2O layer formed on copper in a borate buffer solution[J].Journal of Electroanalytical Chemistry, 2018, 809:52-58.
    [22]
    孙炜.有机复合涂层在三种模拟大气环境介质中的失效过程对比研究[D].北京:北京化工大学, 2018.
    [23]
    王贵容, 郑宏鹏, 蔡华洋, 等.环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J].中国腐蚀与防护学报, 2019, 39(6):571-580.
    [24]
    白思洁.海洋大气环境下两种典型复合涂层体系失效过程中物理化学性质及EIS参数的演变[D].北京:北京化工大学, 2018.
    [25]
    谢德明, 陈晨, 杨珊珊.苯丙乳液的制备及其对自泳涂层的影响[J].浙江工业大学学报, 2019, 47(6):672-678.

Catalog

    Article views (9) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return