• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
CHEN Zhicong, HUANG Chao, LIU Wei, SHEN Limin. Research Progress on WC Composite Coating Preparation Technique and Performance of Wear Resistance and Corrosion Resistance[J]. Corrosion & Protection, 2024, 45(4): 46-53. DOI: 10.11973/fsyfh-202404008
Citation: CHEN Zhicong, HUANG Chao, LIU Wei, SHEN Limin. Research Progress on WC Composite Coating Preparation Technique and Performance of Wear Resistance and Corrosion Resistance[J]. Corrosion & Protection, 2024, 45(4): 46-53. DOI: 10.11973/fsyfh-202404008

Research Progress on WC Composite Coating Preparation Technique and Performance of Wear Resistance and Corrosion Resistance

More Information
  • Received Date: April 08, 2022
  • Tungsten carbide coatings have the characteristics of high chemical stability, high hardness, and good wear resistance, and are commonly used in the preparation of metal surface coatings. Starting from the different preparation principles of tungsten carbide coatings, the research progress of supersonic flame spraying technology, plasma spraying, plasma melting, laser melting, and vacuum melting tungsten carbide coatings at home and abroad were reviewed. The wear resistance and corrosion resistance of the coatings with different preparation technologies were analyzed, and the problems and future research directions of coating preparation technology were discussed.

  • [1]
    DING X, CHENG X D, YU X, et al. Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3):487-494.
    [2]
    BONACHE V, SALVADOR M D, GARCÍA J C, et al. Influence of plasma intensity on wear and erosion resistance of conventional and nanometric WC-Co coatings deposited by APS[J]. Journal of Thermal Spray Technology, 2011, 20(3):549-559.
    [3]
    姚舜晖.碳化钨几何形状对碳化钨增强镍基合金火焰喷涂涂层的摩擦性能影响[J].摩擦学学报,2009,29(3):193-199.
    [4]
    赵文胜.粉末粒径及涂层厚度对HVAF制备WC-10Co-4Cr涂层耐蚀性能的影响[D].太原: 中北大学,2021.
    [5]
    王大锋, 马冰, 马良超, 等.WC颗粒尺寸对超音速火焰喷涂WC-10Co4Cr涂层组织及力学性能的影响[J]. 粉末冶金技术,2019,37(6):434-443.
    [6]
    赵立英, 刘平安, 代洪川.丙烷对爆炸喷涂碳化钨涂层结构和力学性能的影响[J].高校化学工程学报,2016,30(2):466-471.
    [7]
    张磊, 霍嘉翔, 赵坚, 等.工艺参数对氧-丙烷超音速火焰喷涂纳米WC-CoCr涂层组织及性能的影响[J].稀有金属与硬质合金,2021,49(4):15-22.
    [8]
    刘杰, 刘侠, 胡凯, 等.煤油流量对HVOF喷涂WC-12Co/NiCrBSi复合涂层显微组织与性能的影响[J].中国表面工程,2020,33(3):119-128.
    [9]
    韩旭, 杜修忻, 郭孟秋, 等.超音速火焰喷涂WC-10Co4Cr粒子行为试验研究[J].失效分析与预防,2020,15(3):172-178.
    [10]
    SONESTEDT M, FRODELIUS J, PALMQUIST J P, et al. Microstructure of high velocity oxy-fuel sprayed Ti2AlC coatings[J]. Journal of Materials Science, 2010, 45(10):2760-2769.
    [11]
    CABRAL-MIRAMONTES J A, GAONA-TIBURCIO C, ALMERAYA-CALDERÓN F, et al. Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry[J]. International Journal of Corrosion, 2014, 2014:703806.
    [12]
    MÉNDEZ-MEDRANO K O, MARTÍNEZ-GONZÁLEZ C J, ALVARADO-HERNÁNDEZ F, et al. Microstructure and properties characterization of WC-Co-Cr thermal spray coatings[J]. Journal of Minerals and Materials Characterization and Engineering, 2018, 6(4):482-497.
    [13]
    JONDA E, ŁATKA L, TOMICZEK A, et al. Microstructure investigation of WC-based coatings prepared by HVOF onto AZ31 substrate[J]. Materials, 2021, 15(1):40.
    [14]
    代雪婷, 南健, 程庆元.碳化钨代铬涂层耐磨及电化学腐蚀性能研究[J].长沙航空职业技术学院学报,2020,20(1):81-84.
    [15]
    刘福朋.碳化钨、碳化铬类硬质合金涂层及耐磨耐蚀性能研究[D].银川: 宁夏大学,2020.
    [16]
    刘建武, 张雪莹, 张吉阜, 等.热喷涂碳化钨涂层对40CrNiMoA钢耐腐蚀与抗疲劳性能的影响[J].热加工工艺,2015,44(8):125-128.
    [17]
    黄博, 吴庆丹, 魏新龙, 等.超音速火焰喷涂WC-10Co-4Cr涂层的摩擦腐蚀性能研究[J].表面技术,2020,49(1):285-293.
    [18]
    范俊, 杨超, 刘志强, 等.超音速火焰喷涂WC-Co-Ni涂层电化学腐蚀行为研究[J].化学研究与应用,2020,32(9):1547-1551.
    [19]
    KOMAROV P, JECH D, TKACHENKO S, et al. Wetting behavior of wear-resistant WC-Co-Cr cermet coatings produced by HVOF: the role of chemical composition and surface roughness[J]. Journal of Thermal Spray Technology, 2021, 30(1):285-303.
    [20]
    JIN Y F, KONG W C, SHENG T Y, et al. Effect of load on friction-wear behavior of HVOF-sprayed WC-12Co coatings[J]. Journal of Materials Engineering and Performance, 2017, 26(7):3465-3473.
    [21]
    ASL S K, RABIZADEH T, NOORI N F. The effects of heat treatment on the corrosion behavior of HVOF-sprayed WC-17 wt.% Co coatings[J]. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55(5):936-941.
    [22]
    宋超群, 林铁松, 何鹏, 等.超音速等离子喷涂WC-17Co涂层的工艺及性能分析[J].焊接学报,2016,37(11):35-38,130.
    [23]
    李万青, 林铁松, 宋超群, 等.超音速等离子喷涂WC-17Co纳米涂层的性能[J].稀有金属材料与工程,2017,46(3):807-811.
    [24]
    黎红英, 罗朝勇, 谢善, 等.大气等离子喷涂和超音速火焰喷涂制备的CoMoCrSi涂层组织结构和性能[J].热喷涂技术,2020,12(1):62-68.
    [25]
    AFZAL M, AJMAL M, KHAN A N, et al. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique[J]. Optics Laser Technology, 2014, 56:202-206.
    [26]
    鲍君峰, 王辉, 张康.等离子喷涂不同尺度WC钴基耐磨金属陶瓷涂层组织及性能研究[J].热喷涂技术,2016,8(4):23-27.
    [27]
    富伟, 陈清宇, 徐明晗, 等.等离子喷涂WC-Ni涂层的组织结构及力学性能[J].金属热处理,2019,44(4):211-215.
    [28]
    安连彤, 孙成琪, 高阳.电弧电压对低能等离子喷涂WC-Co涂层组织及性能的影响[J].中国表面工程,2016,29(4):111-117.
    [29]
    伏利, 陈小明, 吴燕明, 等.高焓等离子喷涂WC-10Co-4Cr涂层的微观组织及其拉伸断裂机理[J].腐蚀与防护,2018,39(2):95-98,102.
    [30]
    KUZMIN V, GULYAEV I, SERGACHEV D, et al. Supersonic air-plasma spraying of carbide ceramic coatings[J]. Materials Today: Proceedings, 2021, 38:1974-1979.
    [31]
    ANWAR M Y, AJNAL M, AFzal M, et al. Effects of laser treatment on WC-12Co lermet coating by air plasma spraying technique[J]. Journal of Faculty on Engineering & Technology, 2014,21(2):1-9.
    [32]
    梁存光.大气等离子喷涂WC-12Co涂层工艺参数优化及抗冲蚀磨损性能研究[D].乌鲁木齐: 新疆大学,2018.
    [33]
    梁存光, 李新梅, 张鹏飞.等离子喷涂WC-12Co涂层抗冲刷磨损行为[J].表面技术,2017,46(9):7-12.
    [34]
    徐一, 于修水, 蒋穹, 等.超音速等离子喷涂WC10Co4Cr涂层干湿条件下的摩擦磨损性能研究[J].中国钨业,2019,34(5):54-58.
    [35]
    袁晓静, 查柏林, 陈小虎, 等.等离子喷涂WC-10Co-4Cr涂层的组织演变与抗腐蚀磨损性能[J].稀有金属材料与工程,2019,48(2):473-481.
    [36]
    JIANG L H, DAI W W, WEI Z, et al. The effect of immersion time on corrosion performance of the Al2O3-40TiO2 and WC-10Co-4Cr coatings in 3.5 wt.% NaCl solution[J]. Surface Topography: Metrology and Properties, 2022, 10(1):015013.
    [37]
    HOU G L, AN Y L, LIU G, et al. Effect of atmospheric plasma spraying power on microstructure and properties of WC-(W, Cr)2C-Ni coatings[J]. Journal of Thermal Spray Technology, 2011, 20(6):1150-1160.
    [38]
    卢金斌, 弓金霞, 彭竹琴, 等.等离子熔覆添加碳化钨的铁基合金涂层的研究[J].表面技术,2009,38(4):4-6.
    [39]
    屈平, 马跃进, 赵建国, 等.适宜碳化钨含量提高Ti(C, N)-WC涂层耐磨耐蚀性[J].农业工程学报, 2014, 30(16):33-40.
    [40]
    王笑生.等离子熔覆碳化钨增强镍基合金耐磨覆层的研究[D].郑州: 郑州大学,2020.
    [41]
    PENG Y B, ZHANG W, LI T C, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology, 2020, 385:125326.
    [42]
    PENG Y B, ZHANG W, LI T C, et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84:105044.
    [43]
    XIE G Z, SONG X L, ZHANG D J, et al. Microstructure and corrosion properties of thick WC composite coating formed by plasma cladding[J]. Applied Surface Science, 2010, 256(21):6354-6358.
    [44]
    胡明强. Mn13钢等离子熔覆碳化钨-镍基合金复合涂层组织与性能的研究[D].广州: 广东工业大学,2021.
    [45]
    吴磊, 浦娟, 吴铭方, 等.不同碳化钨含量对等离子弧熔覆镍基碳化钨涂层组织及性能的影响[J].材料导报,2021,35(16):16111-16114,16119.
    [46]
    XIE Z X, ZHANG C, WANG R D, et al. Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding[J]. Journal of Materials Research and Technology, 2021, 15:821-833.
    [47]
    张煜, 娄丽艳, 徐庆龙, 等.超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J].金属学报,2020,56(11):1530-1540.
    [48]
    邱焕霞, 俞文斌, 宋建丽, 等.H13钢表面激光熔覆316L/H13+20%WC复合涂层温度场数值模拟[J]. 激光与光电子学进展,2022,59(3):314.
    [49]
    刘泽.Ni-65WC激光熔覆涂层微观结构及性能研究[D].西安: 西安科技大学,2021.
    [50]
    朱继祥.WC、TiC增强铁基复合涂层组织和摩擦磨损性能的研究[D].合肥: 安徽建筑大学,2021.
    [51]
    樊帅奇, 张蕾涛, 李海涛, 等.WC初始状态对激光熔覆Ni60/WC涂层组织及性能的影响[J]. 材料热处理学报,2021,42(6):157-162.
    [52]
    ZHOU S F, ZENG X Y, HU Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5):1646-1653.
    [53]
    ERFANMANESH M, SHOJA-RAZAVI R, ABDOLLAH-POUR H, et al. Influence of using electroless Ni-P coated WC-Co powder on laser cladding of stainless steel[J]. Surface and Coatings Technology, 2018, 348:41-54.
    [54]
    BARTKOWSKI D, BARTKOWSKA A, JURČI P. Laser cladding process of Fe/WC metal matrix composite coatings on low carbon steel using Yb: YAG disk laser[J]. Optics & Laser Technology, 2021, 136:106784.
    [55]
    李礼, 叶宏, 刘越, 等.Cr12MoV钢表面激光熔覆Ni/Ni-WC梯度涂层的组织与耐磨性能[J]. 金属热处理,2021,46(9):223-228.
    [56]
    肖奇, 孙文磊, 刘金朵, 等.Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报,2021,35(8):8146-8150.
    [57]
    杨行, 王华, 林相, 等.激光熔覆铁基WC-Cr覆层的摩擦磨损性能研究[J].热加工工艺,2021,50(24):106-109.
    [58]
    何波, 庄家良, 兰姣姣, 等.激光熔覆碳化钨/钴基合金复合涂层的组织与耐磨性能[J].应用激光,2017,37(3):314-318.
    [59]
    路王珂, 李亚敏, 张喜冬, 等.WC含量对真空熔覆镍基合金涂层组织及性能的影响[J]. 材料保护,2018,51(5):94-97,102.
    [60]
    路王珂, 李亚敏, 张喜冬, 等.熔覆温度对真空熔覆WC增强镍基合金层组织及性能的影响[J].材料保护,2017,50(7):64-67,70.
    [61]
    马世博, 邵明杰, 侯瑞东, 等.碳化钨对真空熔覆铁基复合涂层结构和性能的影响[J].燕山大学学报,2016,40(2):116-122.
    [62]
    何力.真空熔覆WC-10Ni/NiCrBSi复合涂层的力学性能建模及工程应用[D].镇江: 江苏科技大学,2018.
    [63]
    苏科勇, 张明, 王文慧, 等.真空熔覆WC颗粒增强镍基合金涂层的组织与性能[J].材料保护,2018,51(11):80-83.
    [64]
    姚永强, 林晨, 申井义, 等.真空环境与基体预热对激光熔覆WC增强镍基合金涂层组织和性能的影响[J].机械工程材料,2020,44(5):49-53.
    [65]
    YANG G R, HUANG C P, SONG W M, et al. Microstructure characteristics of Ni/WC composite cladding coatings[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(2):184-192.
    [66]
    YANG G R, SONG W M, WANG N, et al. Fabrication and formation mechanism of vacuum cladding Ni/WC/GO composite fusion coatings[J]. Materials Today Communications, 2020, 25:101342.
    [67]
    TAO X P, ZHANG S, WU C L, et al. In situ synthesised WC-reinforced Co-based alloy layer by vacuum cladding[J]. Surface Engineering, 2018, 34(4):316-323.
    [68]
    黄新波, 贾建援, 林化春.钴基合金-碳化钨复合涂层的耐蚀性能[J].机械工程材料,2003,27(11):49-51.
    [69]
    周新星.高频感应真空熔覆金属陶瓷的组织及性能研究[D].青岛: 青岛理工大学,2014.
    [70]
    张喜冬.真空熔覆碳化钨增强镍基合金熔覆层组织及性能的研究[D].郑州: 郑州大学,2015.
    [71]
    ZHANG H F, ZHANG C H, WANG Z Y, et al. Microstructure and corrosion behaviour of WC/NiCrBSi coatings by vacuum cladding[J]. Materials Science and Technology, 2022, 38(1):19-29.
    [72]
    HAN C F, ZHANG X D, SUN Y F. Microstructure and properties of NiFeCrBSi/WC composite coatings fabricated by vacuum cladding[J]. Physics of Metals and Metallography, 2019, 120(9):898-906.

Catalog

    Article views (83) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return