Citation: | SHEN Tianli, KE Yuntian, PENG Bolin, HAN Jinkun, DU Juan. Research Progress on Preparation and Properties of Self-Warning Coatings on Metal Surface[J]. Corrosion & Protection, 2024, 45(11): 94-101. DOI: 10.11973/fsyfh220498 |
After being stimulated by external factors, the coating damage and the corroded sites of the metal can be self-warned and indicated, which is convenient for timely treatments of the corroded sites, avoiding greater damage to materials due to corrosion. On the basis of comprehensive literature search about the study over the preparation and performance of metal surface self-warning coatings (color performance, fluorescence performance, mechanical damage triggering performance), the different warning mechanisms (color mechanism, fluorescence mechanism, mechanical damage triggering mechanism) are summarized and analyzed.
[1] |
GONZÁLEZ J A, OTERO E, BAUTISTA A, et al. Use of electrochemical impedance spectroscopy for studying corrosion at overlapped joints[J]. Progress in Organic Coatings, 1998, 33(1):61-67.
|
[2] |
DEKEYSER J C, DE SCHUTTER F, VAN DER POORTEN C, et al. An electrochemical sodium sensor for aluminium melts[J]. Sensors and Actuators B: Chemical, 1995, 24(1/2/3):273-275.
|
[3] |
NAZAROV A, THIERRY D. Rate-determining reactions of atmospheric corrosion[J]. Electrochimica Acta, 2004, 49(17/18):2717-2724.
|
[4] |
BENOUNIS M, JAFFREZIC-RENAULT N. Elaboration of an optical fibre corrosion sensor for aircraft applications[J]. Sensors and Actuators B: Chemical, 2004, 100(1/2):1-8.
|
[5] |
王军鹏智能自预警与自修复涂层材料的制备及性能研究北京中国科学院大学2018王军鹏. 智能自预警与自修复涂层材料的制备及性能研究[D]. 北京: 中国科学院大学, 2018.
WANG J PPreparation and properties of intelligent self-warning and self-repairing coating materialsBeijingUniversity of Chinese Academy of Sciences2018WANG J P. Preparation and properties of intelligent self-warning and self-repairing coating materials[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
[6] |
JOHNSON R E, AGARWALA V S. The use of fluorescent compounds and complexes of metals as early warning detectors for corrosion[J]. Materials performance, 1994, 33:25-29.
|
[7] |
TIAN X L, FENG C, ZHAO X H. Corrosion monitoring effect of rhodamine-ethylenediamine on copper relics under a protective coating[J]. ACS Omega, 2020, 5(34):21679-21683.
|
[8] |
BÜCHLER M, WATARI T, SMYRL W H. Investigation of the initiation of localized corrosion on aluminum alloys by using fluorescence microscopy[J]. Corrosion Science, 2000, 42(9):1661-1668.
|
[9] |
MAIA F, TEDIM J, BASTOS A C, et al. Nanocontainer-based corrosion sensing coating[J]. Nanotechnology, 2013, 24(41):415502.
|
[10] |
ROBB M J, LI W L, GERGELY R C R, et al. A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission[J]. ACS Central Science, 2016, 2(9):598-603.
|
[11] |
SU F F, DU X C, SHEN T, et al. Aggregation-induced emission luminogens sensors: sensitive fluorescence “turn-on” response for pH and visually chemosensoring on early detection of metal corrosion[J]. Progress in Organic Coatings, 2021, 153:106122.
|
[12] |
张勇, 兰金鹏. 荧光聚氨酯制备与应用的研究进展[J]. 山东化工, 2017, 46(21):74-76,78.
ZHANG Y, LAN J P. Research progress in preparation and application of fluorescent polyurethane[J]. Shandong Chemical Industry, 2017, 46(21):74-76,78.
|
[13] |
MA L W, REN C H, WANG J K, et al. Self-reporting coatings for autonomous detection of coating damage and metal corrosion: a review[J]. Chemical Engineering Journal, 2021, 421:127854.
|
[14] |
彭家松, 孙宁, 李珩, 等. 聚氨酯/碳纳米管复合材料制备的研究进展[J]. 化学通报(印刷版), 2014, 77(5):410-416.
PENG J S, SUN N, LI H, et al. Progress in preparation of polyurethane carbon nanotubes nanocomposites[J]. Chemistry, 2014, 77(5):410-416.
|
[15] |
AUGUSTYNIAK A, TSAVALAS J, MING W H. Early detection of steel corrosion via “turn-on” fluorescence in smart epoxy coatings[J]. ACS Applied Materials & Interfaces, 2009, 1(11):2618-2623.
|
[16] |
ROSHAN S, SARABI DARIANI A A, MOKHTARI J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator[J]. Applied Surface Science, 2018, 440:880-888.
|
[17] |
SIBI M P, ZONG Z G. Determination of corrosion on aluminum alloy under protective coatings using fluorescent probes[J]. Progress in Organic Coatings, 2003, 47(1):8-15.
|
[18] |
LIU G, WHEAT H G. Use of a fluorescent indicator in monitoring underlying corrosion on coated aluminum 2024-T4[J]. Journal of the Electrochemical Society, 2009, 156(4):C160.
|
[19] |
LI S M, ZHANG H R, LIU J H. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:s159-s164.
|
[20] |
王明东刺激响应型智能纳米容器的制备及其在防腐涂层中的应用南京南京理工大学2019王明东. 刺激响应型智能纳米容器的制备及其在防腐涂层中的应用[D]. 南京: 南京理工大学, 2019.
WANG M DPreparation of stimulation-responsive intelligent nanocontainer and its application in anticorrosive coatingsNanjingNanjing University of Science and Technology2019WANG M D. Preparation of stimulation-responsive intelligent nanocontainer and its application in anticorrosive coatings[D]. Nanjing: Nanjing University of Science and Technology, 2019.
|
[21] |
MASSARO M, LAZZARA G, NOTO R, et al. Halloysite nanotubes: a green resource for materials and life sciences[J]. Rendiconti Lincei. Scienze Fisiche e Naturali, 2020, 31(2):213-221.
|
[22] |
孙霜青, 胡松青, 李春玲, 等. 介孔二氧化硅制备和pH响应型纳米容器应用综合研究型实验[J]. 实验技术与管理, 2019, 36(1):67-71.
SUN S Q, HU S Q, LI C L, et al. Comprehensive research-oriented experiment on preparation of mesoporous silica and application of pH responsive nano-containers[J]. Experimental Technology and Management, 2019, 36(1):67-71.
|
[23] |
瞿保钧, 陈伟, 邱龙臻, 等. 聚合物/层状双氢氧化物纳米复合材料的研究与展望[J]. 自然科学进展, 2005(3):272-281.
|
[24] |
ExxonMobil Research and Engineering Company. Researchers submit patent application, “molecular sieves and a process for making molecular sieves”, for approval (USPTO 20200061593)[J]. Electronics Newsweekly, 2023(4):7352-7357.
|
[25] |
刘江, 张小琴, 韩隽, 等. 香豆素类荧光探针在检测方面的研究进展[J]. 浙江化工, 2010, 41(9):27-31.
LIU J, ZHANG X Q, HAN J, et al. Progress on the coumarins fluorescent probe in detection[J]. Zhejiang Chemical Industry, 2010, 41(9):27-31.
|
[26] |
EXBRAYAT L, SALALUK S, UEBEL M, et al. Nanosensors for monitoring early stages of metallic corrosion[J]. ACS Applied Nano Materials, 2019, 2(2):812-818.
|
[27] |
WANG J P, WANG J K, ZHOU Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core-shell nanostructures[J]. Macromolecular Materials and Engineering, 2018, 303:1700616.
|
[28] |
LIU C B, JIN Z Y, CHENG L, et al. Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings[J]. Nanoscale, 2020, 12(5):3194-3204.
|
[29] |
WANG H, FAN Y, TIAN L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion[J]. Materials Letters, 2020, 265:127419.
|
[30] |
GALVÃO T L P, SOUSA I, WILHELM M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers[J]. Chemical Engineering Journal, 2018, 341:526-538.
|
[31] |
ZHENG X, WANG Q, LI Y, et al. Fabrication of self-reactive microcapsules as color visual sensing for damage reporting[J]. Journal of Materials Science, 2020, 55(21):8861-8867.
|
[32] |
BRYANT D E, GREENFIELD D. The use of fluorescent probes for the detection of under-film corrosion[J]. Progress in Organic Coatings, 2006, 57(4):416-420.
|
[33] |
LEE T H, SONG Y K, PARK S H, et al. Dual stimuli responsive self-reporting material for chemical reservoir coating[J]. Applied Surface Science, 2018, 434:1327-1335.
|
[34] |
LIU T, ZHANG D W, MA L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers[J]. Corrosion Science, 2022, 200:110254.
|
[35] |
孔路明基于识别金属离子的荧光探针的设计合成及性能研究郑州中原工学院2022孔路明. 基于识别金属离子的荧光探针的设计合成及性能研究[D]. 郑州: 中原工学院, 2022.
KONG L MDesign, synthesis and performance study of fluorescent probe based on metal ion recognitionZhengzhouZhongyuan University of Technology2022KONG L M. Design, synthesis and performance study of fluorescent probe based on metal ion recognition[D]. Zhengzhou: Zhongyuan University of Technology, 2022.
|
[36] |
鞠鹏飞, 赵祥妮, 熊亮亮, 等. 荧光剂对铝合金防护涂层腐蚀监测敏感性的影响[J]. 中国表面工程, 2018, 31(3):116-125.
JU P F, ZHAO X N, XIONG L L, et al. Effects of fluorescent agent on sensitivity of corrosion monitoring of anticorrosion coatings on aluminum alloy[J]. China Surface Engineering, 2018, 31(3):116-125.
|
[37] |
YAN S C, GUO H D, TAN J J, et al. Two novel spirobifluorene-based two-photon fluorescent probes for the detection of hydrazine in solution and living cells[J]. Talanta, 2020, 218:121210.
|
[38] |
AUGUSTYNIAK A, MING W H. Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings[J]. Progress in Organic Coatings, 2011, 71(4):406-412.
|
[39] |
GUO Y K, CHEN L, XU D G, et al. A dual functional epoxy material with autonomous damage indication and self-healing[J]. RSC Advances, 2016, 6(69):65067-65071.
|
[40] |
LAVRENOVA A, FARKAS J, WEDER C, et al. Visualization of polymer deformation using microcapsules filled with charge-transfer complex precursors[J]. ACS Applied Materials & Interfaces, 2015, 7(39):21828-21834.
|
[41] |
CHEN S S, HAN T, LIU J K, et al. Visualization and monitoring of dynamic damaging - healing processes of polymers by using AIEgen-loaded multifunctional microcapsules[J]. Journal of Materials Chemistry A, 2022, 10(29):15438-15448.
|
[42] |
MATA D, SCHARNAGL N, LAMAKA S V, et al. Validating the early corrosion sensing functionality in poly (ether imide) coatings for enhanced protection of magnesium alloy AZ31[J]. Corrosion Science, 2018, 140:307-320.
|
[43] |
MAIA F, TEDIM J, BASTOS A C, et al. Active sensing coating for early detection of corrosion processes[J]. RSC Advances, 2014, 4:17780-17786.
|
[44] |
DHOLE G S, GUNASEKARAN G, SINGH S K, et al. Smart corrosion sensing phenanthroline modified alkyd coatings[J]. Progress in Organic Coatings, 2015, 89:8-16.
|
[45] |
DHOLE G S, GUNASEKARAN G, GHORPADE T, et al. Smart acrylic coatings for corrosion detection[J]. Progress in Organic Coatings, 2017, 110:140-149.
|
[46] |
LI J, JIANG Z Y, GAN L Z, et al. Functionalized graphene/polymer composite coatings for autonomous early-warning of steel corrosion[J]. Composites Communications, 2018, 9:6-10.
|
[47] |
LI W L, MATTHEWS C C, YANG K, et al. Autonomous indication of mechanical damage in polymeric coatings[J]. Advanced Materials, 2016, 28(11):2189-2194.
|
[48] |
邵健帅, 赵劲彪, 吴新越. 两种漆层下金属腐蚀的无损检测方法[J]. 无损检测, 2018, 40(2):1-5.
SHAO J S, ZHAO J B, WU X Y. Two nondestructive testing methods of metal corrosion under lacquer layer[J]. Nondestructive Testing, 2018, 40(2):1-5.
|
[49] |
CHEN C, YU M, TONG J X, et al. A review of fluorescence based corrosion detection of metals[J]. Corrosion Communications, 2022, 6:1-15.
|
[50] |
卫元坤, 王浩, 张优基于纳米容器的智能自预警与自修复涂层的制备及性能研究第十一届全国腐蚀与防护大会论文摘要集2021940卫元坤, 王浩, 张优. 基于纳米容器的智能自预警与自修复涂层的制备及性能研究[C]//第十一届全国腐蚀与防护大会论文摘要集. [出版地不详]: [出版者不详], 2021: 940.
|
[51] |
朱力华, 孙永福, 李和顺, 等. 氧化锌负载罗丹明B酰肼掺杂环氧复合涂层的制备及其耐蚀性[J]. 腐蚀与防护, 2015, 36(4):317-320,324.
ZHU L H, SUN Y F, LI H S, et al. Preparation and corrosion resistance of epoxy coating mixed by ZnO hollow microcontainer containing rhodamine B hydrazide[J]. Corrosion & Protection, 2015, 36(4):317-320,324.
|
[52] |
刘蔚, 刘斌, 徐大伟, 等. 荧光探针技术在金属初期腐蚀检测中的研究进展[J]. 腐蚀与防护, 2021, 42(5):47-53.
LIU W, LIU B, XU D W, et al. Research progress of fluorescent probes in initial corrosion detection of metals[J]. Corrosion & Protection, 2021, 42(5):47-53.
|
[53] |
杨鹏媛. 电气设备金属腐蚀机理及抑制探讨[J]. 全面腐蚀控制, 2019, 33(8):50-52.
YANG P Y. Discussion on metal corrosion mechanism and suppression of electrical equipment[J]. Total Corrosion Control, 2019, 33(8):50-52.
|
[54] |
VIDINEJEVS S, ANISKEVICH A N, GREGOR A, et al. Smart polymeric coatings for damage visualization in substrate materials[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(12):1371-1377.
|
[55] |
CALVINO C, WEDER C. Microcapsule-containing self-reporting polymers[J]. Small, 2018, 14(46):e1802489.
|