Citation: | DING Qingmiao, ZHAO Fang, CUI Yanyu, MAO Jiabing, ZHAO Manjun, CHENG Bin. Research Progress on Cavitation Erosion of Biomass Fuel Nozzle and Its Protection[J]. Corrosion & Protection, 2025, 46(2): 99-107. DOI: 10.11973/fsyfh220646 |
The cavitation erosion mechanism of nozzles, the cavitation erosion comparison between biomass fuels and traditional fossil fuels in nozzles and the preparation technology of anti cavitation coating are summarized. The research status and existing problems are briefly analyzed. It is pointed out that cavitation erosion is mainly caused by “shock wave” and “micro jet” generated by cavitation bubble burst. By comparing the cavitation effect of biomass fuels and traditional fossil fuels on nozzles, it is found that biomass fuels are more prone to cavitation erosion because of their low viscosity, causing more serious damage to nozzles. Finally, the common preparation techniques for cavitation erosion resistant coatings are summarized.
[1] |
偶国富, 周永芳, 郑智剑, 等. 空蚀机理的研究综述[J]. 液压与气动, 2012, 36(4): 3-8.
OU G F, ZHOU Y F, ZHENG Z J, et al. Review on the mechanism of cavitation erosion[J]. Chinese Hydraulics & Pneumatics, 2012, 36(4): 3-8.
|
[2] |
张鑫, 何志霞, 张文权. 柴油机喷嘴空蚀特性研究进展[J]. 液压气动与密封, 2016, 36(5): 30-35.
ZHANG X, HE Z X, ZHANG W Q. Cavitation erosion in engine injection nozzle: a review[J]. Hydraulics Pneumatics & Seals, 2016, 36(5): 30-35.
|
[3] |
柳伟, 郑玉贵, 姚治铭, 等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报, 2001, 21(4): 59-64.
LIU W, ZHENG Y G, YAO Z M, et al. Research progress on cavitation erosion of metallic materials[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21(4): 59-64.
|
[4] |
KORNFELD M, SUVOROV L. On the destructive action of cavitation[J]. Journal of Applied Physics, 1944, 15: 495-506.
|
[5] |
GREGORČIČ P, PETKOVŠEK R, MOŽINA J. Investigation of a cavitation bubble between a rigid boundary and a free surface[J]. 2007, 102(9): 094904.
|
[6] |
KLING C L, HAMMITT F G. A photographic study of spark-induced cavitation bubble collapse[J]. Journal of Basic Engineering, 1972, 94(4): 825-832.
|
[7] |
PLESSET M S, CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47: 283-290.
|
[8] |
KNAPP R T, DAILY J W, HAMMITT F G. Cavitation[M]. New York: McGraw-Hill, 1970.
|
[9] |
胡影影VOF方法的改进及空泡溃灭和空化流的数值研究北京清华大学2001胡影影. VOF方法的改进及空泡溃灭和空化流的数值研究[D]. 北京: 清华大学, 2001.
|
[10] |
SHIMA A, TOMITA Y, TAKAHASHI K. The collapse of a gas bubble near a solid wall by a shock wave and the induced impulsive pressure[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1984, 198(2): 81-86.
|
[11] |
SINGER B G, HARVEY S J. Cavitation damage studies using plasticine[J]. International Journal of Mechanical Sciences, 1979, 21(7): 409-416.
|
[12] |
PREECE C M, BRUNTON J H. A comparison of liquid impact erosion and cavitation erosion[J]. Wear, 1980, 60(2): 269-284.
|
[13] |
ABDEL FATTAH A M, SIDKEY M A. Cavitational damage of titanium in molten lead[J]. Bulletin of Materials Science, 1983, 5(2): 179-184.
|
[14] |
应崇福, 安宇. 声空化气泡内部的高温和高压分布[J]. 中国科学(A辑), 2002, 32(4): 305-313.
|
[15] |
柯乃普, 戴利, 哈密脱. 空化与空蚀[M]. 水利水电科学 研究院 译. 北京: 水利出版社, 1981.
|
[16] |
孙冬柏, 张秀丽, 俞宏英 等. 空蚀过程中电化学电位变化规律研究[J]. 中国腐蚀与防护学报, 2000(5): 308-311.
SUN D B, ZHANG X L, YU H Y, et al. Experimental study on electrochemical potential in the process of cavitation damage[J]. Journal of Chinese Society for Corrosion and Protection, 2000, 20(5): 308-311.
|
[17] |
TOMLINSON W J, TALKS M G. Erosion and corrosion of cast iron under cavitation conditions[J]. Tribology International, 1991, 24(2): 67-75.
|
[18] |
SAKAMOTO A, FUNAKI H, MATSUMURA M. Influence of galvanic macro-cell corrosion on the cavitation erosion durability assessment of metallic materials[J]. Zairyo-to-Kankyo, 1994, 43(2): 70-75.
|
[19] |
SKODA R, IBEN U, MOROZOV A, et alNumerical simulation of collapse induced shock dynamics for the prediction of the geometry, pressure and temperature impact on the cavitation erosion in micro channelsProceedings of WIMRC 3rd International Cavitation Forum 201120111102022-11-03 https://www.researchgate.net/publication/265092705SKODA" target="_blank"> https://www.researchgate.net/publication/265092705SKODA R, IBEN U, MOROZOV A, et al. Numerical simulation of collapse induced shock dynamics for the prediction of the geometry, pressure and temperature impact on the cavitation erosion in micro channels[C/OL]//Proceedings of WIMRC 3rd International Cavitation Forum 2011. [S. l. : s. n.], 2011: 1-10[2022-11-03]. https://www.researchgate.net/publication/265092705.
|
[20] |
CRISTOFARO M, EDELBAUER W, GAVAISES M, et alNumerical simulation of compressible cavitating two-phase flows with a pressure-based solverProceedings Ilass-Europe 2017, 28th Conference on Liquid Atomization and Spray Systems2017-07-182022-11-03 http://dx.doi.org/10.4995/ilass2017.2017.4629CRISTOFARO" target="_blank"> http://dx.doi.org/10.4995/ilass2017.2017.4629CRISTOFARO M, EDELBAUER W, GAVAISES M, et al. Numerical simulation of compressible cavitating two-phase flows with a pressure-based solver[C/OL]//Proceedings Ilass-Europe 2017, 28th Conference on Liquid Atomization and Spray Systems. (2017-07-18) [2022-11-03]. http://dx.doi.org/10.4995/ilass2017.2017.4629.
|
[21] |
SEZAL I H, SCHMIDT S J, SCHNERR G H, et al. Shock and wave dynamics in cavitating compressible liquid flows in injection nozzles[J]. Shock Waves, 2009, 19(1): 49-58.
|
[22] |
KOUKOUVINIS P, NASERI H, GAVAISES M. Performance of turbulence and cavitation models in prediction of incipient and developed cavitation[J]. International Journal of Engine Research, 2017, 18(4): 333-350.
|
[23] |
KOUKOUVINIS P, GAVAISES M, LI J, et al. Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage[J]. Fuel, 2016, 175: 26-39.
|
[24] |
MOHAN B, YANG W M, YU W B, et al. Numerical simulation on spray characteristics of ether fuels[J]. Energy Procedia, 2015, 75: 919-924.
|
[25] |
王虎, 姚智华, 沃恒洲, 等. 不同配比的乳化生物质油/柴油空蚀行为的研究[J]. 合肥工业大学学报(自然科学版), 2012, 35(9): 1176-1179.
WANG H, YAO Z H, WO H Z, et al. Study of cavitation erosion behavior of emulsified biomass fuel/diesel with different components[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(9): 1176-1179.
|
[26] |
GALLE J, VERHELST S, SIERENS R, et al. Failure of fuel injectors in a medium speed diesel engine operating on bio-oil[J]. Biomass and Bioenergy, 2012, 40: 27-35.
|
[27] |
FRANZONI F, MILANI M, MONTORSI LThe influence of cavitation and aeration in a multi-fuel injectorSae Technical Paper Series, Powertrains, Fuels and Lubricants MeetingWarrendale, PASae International20082022-11-03 https://doi.org/10.4271/2008-01-2390FRANZONI" target="_blank"> https://doi.org/10.4271/2008-01-2390FRANZONI F, MILANI M, MONTORSI L. The influence of cavitation and aeration in a multi-fuel injector[C/OL]//Sae Technical Paper Series, Powertrains, Fuels and Lubricants Meeting. Warrendale, PA: Sae International, 2008. [2022-11-03]. https://doi.org/10.4271/2008-01-2390.
|
[28] |
PARK S H, SUH H K, LEE C S. Effect of cavitating flow on the flow and fuel atomization characteristics of biodiesel and diesel fuels[J]. Energy & Fuels, 2008, 22(1): 605-613.
|
[29] |
CHIARAMONTI D, BONINI M, FRATINI E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines: part 2: tests in diesel engines[J]. Biomass and Bioenergy, 2003, 25(1): 101-111.
|
[30] |
黄加强, 代青华, 汪洋, 等. 抗空泡腐蚀涂层的研究进展[J]. 上海涂料, 2016, 54(4): 29-33.
HUANG J Q, DAI Q H, WANG Y, et al. The research progress of cavitation erosion resistant coating[J]. Shanghai Coatings, 2016, 54(4): 29-33.
|
[31] |
王燕燕, 赵伟国, 韩向东, 等. 基于叶片包角和出口安放角对叶轮的改进设计[J]. 排灌机械工程学报, 2019, 37(7): 574-579.
WANG Y Y, ZHAO W G, HAN X D, et al. Improved centrifugal pump impeller design in terms of blade wrap and exit angles[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(7): 574-579.
|
[32] |
LUO Q, WU Z, QIN Z B, et al. Surface modification of nickel-aluminum bronze alloy with gradient Ni-Cu solid solution coating via thermal diffusion[J]. Surface and Coatings Technology, 2017, 309: 106-113.
|
[33] |
李雪寒, 李家乐, 秦真波, 等. 耐空蚀涂层及其研究进展[J]. 表面技术, 2022, 51(1): 1-15,42.
LI X H, LI J L, QIN Z B, et al. Research progress of cavitation corrosion resistant coatings[J]. Surface Technology, 2022, 51(1): 1-15,42.
|
[34] |
ROA C V, VALDES J A, LARRAHONDO F, et al. Comparison of the resistance to cavitation erosion and slurry erosion of four kinds of surface modification on 13-4 CA6NM hydro-machinery steel[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7195-7212.
|
[35] |
CHONG S O, KIM S J. Characterization of cavitation-erosion resistance of plasma ion nitrided 316L stainless steel under shock wave in seawater[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(7): 3943-3949.
|
[36] |
OLIVEIRA D B, FRANCO A R, BOZZI A C. Influence of low temperature plasma carbonitriding on cavitation erosion resistance of the stellite 250 alloy-a preliminary evaluation[J]. Wear, 2021, 476: 203653.
|
[37] |
李海斌, 刘树龙, 刘义, 等. TI-6AL-4V合金表面渗层制备及空蚀性能研究[J]. 表面技术, 2020, 49(4): 324-331.
LI H B, LIU S L, LIU Y, et al. Preparation and cavitation erosion of surface diffusion coating on Ti-6Al-4V alloy[J]. Surface Technology, 2020, 49(4): 324-331.
|
[38] |
SAENZ-BETANCOURT C C, RODRÍGUEZ S A, CORONADO J J. Effect of boronising on the cavitation erosion resistance of stainless steel used for hydromachinery applications[J]. Wear, 2022, 498: 204330.
|
[39] |
MORISADA Y, FUJII H, MIZUNO T, et al. Modification of thermally sprayed cemented carbide layer by friction stir processing[J]. Surface and Coatings Technology, 2010, 204(15): 2459-2464.
|
[40] |
PEAT T, GALLOWAY A, TOUMPIS A, et al. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing[J]. Applied Surface Science, 2017, 396: 1635-1648.
|
[41] |
PEAT T, GALLOWAY A, TOUMPIS A, et al. Enhanced erosion performance of cold spray co-deposited AISI316 mmcs modified by friction stir processing[J]. Materials & Design, 2017, 120: 22-35.
|
[42] |
SELVAM K, MANDAL P, GREWAL H S, et al. Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel[J]. Ultrasonics Sonochemistry, 2018, 44: 331-339.
|
[43] |
SI C R, SUN W B, TIAN Y, et al. Cavitation erosion resistance enhancement of the surface modified 2024T351 Al alloy by ultrasonic shot peening[J]. Surface and Coatings Technology, 2023, 452: 129122.
|
[44] |
付天琳, 安楠楠, 王康, 等. 表面梯度纳米晶结构对06CR19NI10钢抗空蚀性能的影响[J]. 表面技术, 2022, 51(4): 247-254,262.
FU T L, AN N N, WANG K, et al. Effect of surface gradient nanocrystalline structure on the cavitation erosion resistance of 06CR19Ni10 steel[J]. Surface Technology, 2022, 51(4): 247-254,262.
|
[45] |
徐进, 阳义. 水轮机过流部件现场激光熔覆修复和表面强化涂层应用研究[J]. 大电机技术, 2020(6): 55-61.
XU J, YANG Y. The application research of field laser cladding repair and surface strengthening coating in the flow passage parts of hydraulic turbine[J]. Large Electric Machine and Hydraulic Turbine, 2020(6): 55-61.
|
[46] |
康全飞镍铝青铜激光熔覆镍基合金涂层的制备与性能研究武汉华中科技大学2017康全飞. 镍铝青铜激光熔覆镍基合金涂层的制备与性能研究[D]. 武汉: 华中科技大学, 2017.
KANG Q FPreparation and properties research of nickel-based alloy coatings by laser cladding on nickel-aluminum bronzeWuhanHuazhong University of Science and Technology2017KANG Q F. Preparation and properties research of nickel-based alloy coatings by laser cladding on nickel-aluminum bronze[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
[47] |
伊俊振激光高熵合金化涂层的制备及磨蚀性能研究沈阳沈阳工业大学2015伊俊振. 激光高熵合金化涂层的制备及磨蚀性能研究[D]. 沈阳: 沈阳工业大学, 2015.
YI J ZPreparation and abrasion properties of laser high-entropy alloying coatingsShenyangShenyang University of Technology2015YI J Z. Preparation and abrasion properties of laser high-entropy alloying coatings[D]. Shenyang: Shenyang University of Technology, 2015.
|
[48] |
ZHANG S, WU C L, ZHANG C H, et al. Laser surface alloying of fecocralni high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Optics & Laser Technology, 2016, 84: 23-31.
|
[49] |
孙景勇, 晏宇亮, 李波, 等. 超音速激光沉积与激光熔覆Stellite-6涂层的抗气蚀性能及其机制对比研究[J]. 中国激光, 2021, 48(10): 182-192.
SUN J Y, YAN Y L, LI B, et al. Comparative study on cavitation-resistance and mechanism of Stellite-6 coatings prepared with supersonic laser deposition and laser cladding[J]. Chinese Journal of Lasers, 2021, 48(10): 182-192.
|
[50] |
TONG Z P, JIAO J F, ZHOU W F, et al. Improvement in cavitation erosion resistance of AA5083 aluminium alloy by laser shock processing[J]. Surface and Coatings Technology, 2019, 377: 124799.
|
[51] |
KRELLA A. Resistance of pvd coatings to erosive and wear processes: a review[J]. Coatings, 2020, 10(10): 921.
|
[52] |
SZALA M, WALCZAK M, PASIERBIEWICZ K, et al. Cavitation erosion and sliding wear mechanisms of altin and tialn films deposited on stainless steel substrate[J]. Coatings, 2019, 9(5): 340.
|
[53] |
MA D, HARVEY T J, WELLMAN R G, et al. Cavitation erosion performance of cralyn/crn nanoscale multilayer coatings deposited on Ti6Al4V by hipims[J]. Journal of Alloys and Compounds, 2019, 788: 719-728.
|
[54] |
QIAO L, WU Y P, HONG S, et al. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of hvof sprayed Fe-based amorphous/nanocrystalline coatings[J]. Ultrasonics Sonochemistry, 2017, 39: 39-46.
|
[55] |
WU Y P, HONG S, ZHANG J F, et al. Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying[J]. International Journal of Refractory Metals and Hard Materials, 2012, 32: 21-26.
|
[56] |
SANTA J F, BLANCO J A, GIRALDO J E, et al. Cavitation erosion of martensitic and austenitic stainless steel welded coatings[J]. Wear, 2011, 271(9/10): 1445-1453.
|
[57] |
于盛旺, 李惠琪, 王斐斐, 等. 高铬铁基等离子束表面冶金层的耐空蚀性能研究[J]. 金属热处理, 2008, 33(5): 60-63.
YU S W, LI H Q, WANG F F, et al. Cavitations erosion resistance of high chromium Fe-based coating by plasma jet surface metallurgy[J]. Heat Treatment of Metals, 2008, 33(5): 60-63.
|
[58] |
刘舜尧, 张松, 崔文东, 等. WxC增强镍基合金等离子堆焊层组织与空蚀性能[J]. 焊接学报, 2017, 38(4): 39-42,130.
LIU S Y, ZHANG S, CUI W D, et al. Microstructure and cavitation erosion performance of WxC reinforced Ni-base alloy composite coating by plasma transferred arc welding[J]. Transactions of the China Welding Institution, 2017, 38(4): 39-42,130.
|
[59] |
XIE F W, ZHANG T L, BRYANT P, et al. Degradation and stabilization of polyurethane elastomers[J]. Progress in Polymer Science, 2019, 90: 211-268.
|
[60] |
AKINDOYO J O, BEG M D H, GHAZALI S, et al. Polyurethane types, synthesis and applications-A review[J]. Rsc Advances, 2016, 6(115): 114453-114482.
|
[61] |
代青华抗空蚀复合涂层的制备及性能研究北京机械科学研究总院2017代青华. 抗空蚀复合涂层的制备及性能研究[D]. 北京: 机械科学研究总院, 2017.
DAI Q HStudy on preparation and property of anti-cavitation composite coatingBeijingChina Academy of Machinery Science and Technology Group Co., Ltd.2017DAI Q H. Study on preparation and property of anti-cavitation composite coating[D]. Beijing: China Academy of Machinery Science and Technology Group Co., Ltd., 2017.
|
[62] |
QIU N, WANG L Q, WU S H, et al. Research on cavitation erosion and wear resistance performance of coatings[J]. Engineering Failure Analysis, 2015, 55: 208-223.
|
[63] |
孔令辉, 刘东, 张雷, 等. 水力机械抗空蚀涂层研究进展[J]. 人民黄河, 2023, 45(6): 157-162.
KONG L H, LIU D, ZHANG L, et al. Research progress of anti-cavitation coatings of hydraulic machinery[J]. Yellow River, 2023, 45(6): 157-162.
|
[64] |
MARLIN P, CHAHINE G L. Erosion and heating of polyurea under cavitating jets[J]. Wear, 2018, 414: 262-274.
|
[65] |
刘志强, 张智嘉, 魏浩. 材料表面抗空蚀涂层的研究进展[J]. 功能材料, 2021, 52(4): 4038-4045,4053.
LIU Z Q, ZHANG Z J, WEI H. Research progress on cavitation erosion resistance coatings of material surfaces[J]. Journal of Functional Materials, 2021, 52(4): 4038-4045,4053.
|
[66] |
WANG C Y, CHENG W, SHAO Y K, et al. Cavitation erosion behaviour of aisi 420 stainless steel subjected to laser shock peening as a function of the coverage layer in distilled water and water-particle solutions[J]. Wear, 2021, 470: 203611.
|