Citation: | LIU Yuning, MO Yongda, XIANG Chaojian, ZHU Rufei, WANG Yunpeng, SUN Yan, CHEN Zhongping, CAI Zhengxu, WANG Hu, LOU Huafen. Influence Factors on Surface Roughness of C19400 Alloy after Semi-Etching[J]. Corrosion & Protection, 2024, 45(9): 74-79. DOI: 10.11973/fsyfh220730 |
The surface roughness of C19400 alloy after semi-etching seriously affects the yield and subsequent use of related products. The semi-etching experiments of four kinds of C19400 alloys were carried out under factory conditions. The effects of the size and quantity of the second phase and the kernel average misorientation (KAM) of the material on the surface roughness of the material after semi-etching were analyzed. The results show that when the size of the second phase particles was greater than 1 μm, it significantly affected the surface roughness of the material after semi-etching. The number density of large-sized second phase particles in C19400 alloy was controlled within a certain range to ensure that the KAM value of C19400 alloy material was greater than 2, which was more conducive to obtaining a relatively smooth material surface after semi-etching.
[1] |
张文芹, 吕显龙, 冯小龙. 蚀刻型高密度引线框架铜合金带材的研制进展[J]. 有色金属材料与工程, 2020, 41(3):1-6.
ZHANG W Q, LYU X L, FENG X L. Development of copper alloy strip for etched high density lead frame[J]. Nonferrous Metal Materials and Engineering, 2020, 41(3):1-6.
|
[2] |
CHRCANOVIC B R, WENNERBERG A, MARTINS M D. Influence of temperature and acid etching time on the superficial characteristics of Ti[J]. Materials Research, 2015, 18(5):963-970.
|
[3] |
张永成, 卢建树. 化学蚀刻304不锈钢表面结构研究[J]. 表面技术, 2015, 44(1):122-126.
ZHANG Y C, LU J S. Surface structure studies on 304 stainless steel after chemical etching[J]. Surface Technology, 2015, 44(1):122-126.
|
[4] |
CHRCANOVIC B R, MARTINS M D. Study of the influence of acid etching treatments on the superficial characteristics of Ti[J]. Materials Research, 2014, 17(2):373-380.
|
[5] |
陈东良, 刘志奇, 周家农. 冷压成形模具钢42CrMo脉冲电压刻蚀加工表面纹理分析[J]. 热加工工艺, 2022, 51(24):97-102.
CHEN D L, LIU Z Q, ZHOU J N. Surface texture analysis of cold-pressed die steel 42CrMo pulsed voltage etching[J]. Hot Working Technology, 2022, 51(24):97-102.
|
[6] |
杨文灏, 鲍明东, 唐宾, 等. 表面粗糙度对磁控溅射纯Cu靶材刻蚀区表面形貌及溅射性能的影响[J]. 金属热处理, 2021, 46(8):230-236.
YANG W H, BAO M D, TANG B, et al. Influence of surface roughness on surface morphology and sputtering performance of magnetron sputtering etched area of pure Cu target[J]. Heat Treatment of Metals, 2021, 46(8):230-236.
|
[7] |
SUN Y K, LIU J Y, MING P M, et al. Wire electrochemical etching of superhydrophobic 304 stainless steel surfaces based on high local current density with neutral electrolyte[J]. Applied Surface Science, 2022, 571:151269.
|
[8] |
ZHANG D G, CHENG H M, WANG Y J, et al. Effect of different acid treatment on surface characteristics of titanium alloy[J]. Materials Science Forum, 2011, 694:490-496.
|
[9] |
CHRCANVIC B R, MARTINS M D. Study of the influence of acid etching treatments on the superficial characteristics of Ti[J]. Materials Research, 2014, 17(2) :373-380.
|
[10] |
叶非华, 刘攀, 常润川. 化学微蚀工艺对铜面表观粗糙度的影响研究[J]. 印制电路信息, 2013(S1):189-195.
|
[11] |
陈小祝, 杨元政, 龙红军. Fe、P对C194铜合金组织与性能的影响[J]. 铸造, 2010, 59(1):64-66,70.
CHEN X Z, YANG Y Z, LONG H J. Effects of Fe and P on microstructure and properties of C194 copper alloys[J]. Foundry, 2010, 59(1):64-66,70.
|
[12] |
吴昊. 引线框架材料铁元素添加工艺研究[J]. 上海有色金属, 2016, 37(1):29-32.
WU H. Application of addition technique of iron in lead frame materials[J]. Nonferrous Metal Materials and Engineering, 2016, 37(1):29-32.
|
[13] |
孔玢, 李丽, 刘正乔, 等. 工业纯钛在硫酸中的腐蚀行为及其机理研究[J]. 钛工业进展, 2022, 39(2):18-23.
KONG F, LI L, LIU Z Q, et al. Study on corrosion behavior and its mechanism of commercially pure titanium in sulfuric acid[J]. Titanium Industry Progress, 2022, 39(2):18-23.
|
[14] |
熊谷淳一, 阿部良雄, 齐藤晃, 等模具耐磨性及剪切加工性良好的Cu-Ni-Si系铜合金板及其制造方法CN104011236A2014-08-27熊谷淳一, 阿部良雄, 齐藤晃, 等. 模具耐磨性及剪切加工性良好的Cu-Ni-Si系铜合金板及其制造方法: CN104011236A[P]. 2014-08-27.
|
[15] |
WANG C, LIU Y L, WANG C, et alUniformity improvement and roughness reduction by using non-ion surfactant in the weakly alkaline barrier slurry2019 China Semiconductor Technology International Conference (CSTIC)ShanghaiIEEE201913WANG C, LIU Y L, WANG C, et al. Uniformity improvement and roughness reduction by using non-ion surfactant in the weakly alkaline barrier slurry[C]//2019 China Semiconductor Technology International Conference (CSTIC). Shanghai: IEEE, 2019: 1-3.
|