• 中国科技论文统计源期刊
  • 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • Scopus数据库全文收录期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
HAN Yongming, SHANG Chenguang. Oxidation Behavior of P92 Steel in Ultra-Supercritical Water at 650 ℃ and 30 MPa[J]. Corrosion & Protection, 2025, 46(4): 35-44. DOI: 10.11973/fsyfh240626
Citation: HAN Yongming, SHANG Chenguang. Oxidation Behavior of P92 Steel in Ultra-Supercritical Water at 650 ℃ and 30 MPa[J]. Corrosion & Protection, 2025, 46(4): 35-44. DOI: 10.11973/fsyfh240626

Oxidation Behavior of P92 Steel in Ultra-Supercritical Water at 650 ℃ and 30 MPa

More Information
  • Received Date: December 19, 2024
  • Oxidation experiments of P92 steel were conducted in supercritical water at 650 ℃ and 30 MPa with an oxygen content of 100 μg/L. The phase, morphology, structure, and elemental distribution of the oxide film were characterized using Raman spectroscopy and scanning electron microscopy (SEM), and the oxidation behavior and mechanisms of P92 steel were investigated. The results show that the growth of the outer layer, inner layer, and total thickness of the oxide film approximately followed a parabolic law over time, while the thickness of the inner oxide layer remained essentially unchanged. With increasing oxidation time, the central pores of the surface Fe3O4 particles gradually healed, and the particle size increased. Subsequently, a loose and porous Fe2O3 layer with slight Cr enrichment formed on the surface. The inner oxide layer consisted of fine oxide particles, preferential oxidation channels along the interface, and residual matrix. As oxidation time increased, the preferential oxidation channels eventually evolved into discontinuous Cr-rich layers, leading to localized thinning of the oxide layer. The thickness of the oxide film became increasingly influenced by the microstructure. Ni elements diffused and enriched in the inner layer.

  • [1]
    ZHONG X Y, WU X Q, HAN E H. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water[J]. Corrosion Science, 2015, 90: 511-521.
    [2]
    庞飞飞, 李宇春, 张锐锋, 等. 620 ℃条件下T/P92耐热钢的腐蚀行为[J]. 腐蚀与防护, 2013, 34(12): 1086-1089.

    PANG F F, LI Y C, ZHANG R F, et al. Corrosion behavior of T/P92 heat resistant steel at 620 ℃[J]. Corrosion & Protection, 2013, 34(12): 1086-1089.
    [3]
    尹开锯, 邱绍宇, 唐睿, 等. P92钢在超临界水中的腐蚀行为[J]. 腐蚀与防护, 2010, 31(5): 334-337,410.

    YIN K J, QIU S Y, TANG R, et al. Corrosion behavior of steel P92 in supercritical water[J]. Corrosion & Protection, 2010, 31(5): 334-337,410.
    [4]
    乔岩欣, 王硕, 高宇键, 等. 铁素体-马氏体钢P92在超临界水中的腐蚀行为[J]. 钢铁研究学报, 2016, 28(8): 57-63.

    QIAO Y X, WANG S, GAO Y J, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water[J]. Journal of Iron and Steel Research, 2016, 28(8): 57-63.
    [5]
    程从前, 刘宜萱, 赵杰. 几种耐热钢在超(超)临界水中抗氧化性能的比较[J]. 机械工程材料, 2014, 38(4): 55-58,62.

    CHENG C Q, LIU Y X, ZHAO J. Comparison of oxidation resistance of several heat resistant steels in supercritical water[J]. Materials for Mechanical Engineering, 2014, 38(4): 55-58,62.
    [6]
    朱发文, 张乐福, 唐睿, 等. 铁素体-马氏体钢P92在超临界水中的腐蚀性能[J]. 原子能科学技术, 2010, 44(8): 979-983.

    ZHU F W, ZHANG L F, TANG R, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water[J]. Atomic Energy Science and Technology, 2010, 44(8): 979-983.
    [7]
    尹开锯, 邱绍宇, 唐睿, 等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析[J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5.

    YIN K J, QIU S Y, TANG R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1): 1-5.
    [8]
    ZHU Z L, XU H, JIANG D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water[J]. Corrosion Science, 2016, 113: 172-179.
    [9]
    ZHANG N Q, ZHU Z L, LV F B, et al. Influence of exposure pressure on oxidation behavior of the ferritic-martensitic steel in steam and supercritical water[J]. Oxidation of Metals, 2016, 86(1): 113-124.
    [10]
    AMPORNRAT P, WAS G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1/2/3): 1-17.
    [11]
    CHEN K, ZHANG L F, SHEN Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization[J]. Acta Materialia, 2020, 194: 156-167.
    [12]
    CHEN Y, SRIDHARAN K, ALLEN T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water[J]. Corrosion Science, 2006, 48(9): 2843-2854.
    [13]
    BISCHOFF J, MOTTA A T. EFTEM and EELS analysis of the oxide layer formed on HCM12A exposed to SCW[J]. Journal of Nuclear Materials, 2012, 430(1/2/3): 171-180.
    [14]
    SHANG C G, ZHOU Z G, WANG F, et al. Evolution of oxide film of a new martensitic steel 9Cr3W3Co in supercritical water[J]. Corrosion Science, 2022, 209: 110771.
    [15]
    白银, 刘正东, 包汉生, 等. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程, 2021, 49(6): 77-84.

    BAI Y, LIU Z D, BAO H S, et al. Research progress in steam oxidation behavior of martensitic steel used for boiler[J]. Journal of Materials Engineering, 2021, 49(6): 77-84.
    [16]
    ZHU Z L, KHAN H I, CAO Q, et al. Oxidation behavior of ferritic steel T22 exposed to supercritical water[J]. High Temperature Materials and Processes, 2019, 38(2019): 476-484.
    [17]
    ZHONG X Y, WU X Q, HAN E H. The characteristic of oxide scales on T91 tube after long-term service in an ultra-supercritical coal power plant[J]. The Journal of Supercritical Fluids, 2012, 72: 68-77.
    [18]
    SHEN Z, CHEN K, YU H B, et al. New insights into the oxidation mechanisms of a Ferritic-Martensitic steel in high-temperature steam[J]. Acta Materialia, 2020, 194: 522-539.
    [19]
    YE Z F, WANG P, DONG H, et al. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation[J]. Scientific Reports, 2016, 6: 35268.
    [20]
    ZHU Z L, LI R T, LIU X, et al. The characterization of oxide scales formed on ferritic-martensitic steel in supercritical water with dissolved oxygen[J]. Corrosion Science, 2020, 174: 108810.
    [21]
    CARL W. Reaktionstypen Bei der oxydation von legierungen[J]. Zeitschrift Für Elektrochemie, Berichte der Bunsengesellschaft Für Physikalische Chemie, 1959, 63(7): 772-782.
    [22]
    李艳辉超临界水体系下典型合金腐蚀机制研究西安西安交通大学2019李艳辉. 超临界水体系下典型合金腐蚀机制研究[D]. 西安: 西安交通大学, 2019.

    LI Y HStudy on corrosion mechanisms of typical alloys in supercritical water systemsXi'anXi'an Jiaotong University2019LI Y H. Study on corrosion mechanisms of typical alloys in supercritical water systems[D]. Xi'an: Xi'an Jiaotong University, 2019.
    [23]
    NEIL B, MEIER G H, PETTIT F S. Introduction to the high temperature oxidation of metals[M]. Oxford: Cambridge University Press, 2006.

Catalog

    Article views (28) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return