• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHENG Hanwen, SHU Xiaoyong, LI Yang, ZHAO Jianping. Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy[J]. Materials and Mechanical Engineering, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008
Citation: ZHENG Hanwen, SHU Xiaoyong, LI Yang, ZHAO Jianping. Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy[J]. Materials and Mechanical Engineering, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008

Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy

More Information
  • Received Date: November 30, 2017
  • Revised Date: November 14, 2018
  • A new Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 amorphous alloy was prepared by melt-spinning method. The nanoindentation tests were conducted on the alloy at room temperature under different peak loads (3, 5, 7, 9, 12 mN) and at different loading rates (1, 2, 3, 4, 5 mN·s-1). The effects of loading rate and peak load on the elastic modulus, nanoindentation hardness and creep behavior were studied. The results show that the tested alloy was completely amorphous with relatively high nanoindentation hardness and high elastic modulus. With the peak load increasing (ie., the indentation depth increasing), the nanoindentation hardness of the tested alloy decreased, indicating a relatively obvious size effect, and the elastic modulus decreased slightly. With the increase of loading rate, the nanoindentation hardness and elastic modulus increased. During the holding load stage of the nanoindentation test, the tested alloy creeped. The maximum creep displacement increased with the peak load or loading rate increasing, and the creep stress exponent increased with the peak load increasing or the loading rate decreasing.
  • [1]
    TREXLER M M, THADHANI N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55(8):759-839.
    [2]
    CHAO Q, WANG Q, DONG Y. Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization[J]. Rare Metals, 2009, 28(1):72-76.
    [3]
    ZHANG G P, LIU Y, ZHANG B. Effect of annealing close to Tg on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications[J]. Scripta Materialia, 2006, 54(5):897-901.
    [4]
    WANG W M, GEBERT A, ROTH S, et al. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys[J]. Journal of Alloys and Compounds,2008,459(1/2):203-208.
    [5]
    HUANG Y J, GUO Y Z, FAN H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance[J]. Materials Letters, 2012, 89:229-232.
    [6]
    SHEN J, CHEN Q J, SUN J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy[J]. Applied Physics Letters, 2005,86(15):151907.
    [7]
    庄法坤, 涂善东, 周帼彦,等. 不同小试样测量蠕变性能的比较研究[J]. 机械工程学报, 2015, 51(6):9-18.
    [8]
    郭荻子, 林鑫, 赵永庆,等. 纳米压痕方法在材料研究中的应用[J]. 材料导报, 2011, 25(13):10-14.
    [9]
    徐宏扬, 柯海波, 黄火根,等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017,53(7):817-823.
    [10]
    RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation[J].Acta Materialia,2012,60(9):3953-3964.
    [11]
    ALIAGA L C R, FORNELL BERINGUES J, SURIÑACH S, et al. Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition[J]. Journal of Materials Research, 2013, 28(19):2740-2746.
    [12]
    WEI B C, ZHANG T H, LI W H. Indentation creep behavior in Ce-based bulk metallic glasses at room temperature[J]. Materials Transactions, 2005, 46(12):2959-2962.
    [13]
    SUN B A, WANG W H. The fracture of bulk metallic glasses[J]. Progress in Materials Science,2015,74:211-307.
    [14]
    汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177-351.
    [15]
    WEI Y G, WANG X Z, ZHAO M H. Size effect measurement and characterization in nanoindentation test[J]. Journal of Materials Research, 2004, 19(1):208-217.
    [16]
    GAO H J, HUANG Y G. Geometrically necessary dislocation and size-dependent plasticity[J]. Scripta Materialia, 2003, 48(2):113-118.
    [17]
    MA Y, PENG G J, FENG Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Materials Science and Engineering:A,2016,651:548-555.
    [18]
    BOWER A F, FLECK N A, NEEDLEMAN A. Indentation of a power law creeping solid[J]. Proceedings of the Royal Society of London A, 1993, 441:97-124.
    [19]
    JOHNSON W L, LU J, DEMETRIOU M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids:A self consistent dynamic free volume model[J]. Intermetallics, 2002, 10(11):1039-1046.
    [20]
    ARGON A S. Plastic deformation in metallic glasses[J]. Acta Metallurgica, 1979, 27:47-58.
    [21]
    张长青. Fe-Ni-P-B合金的深过冷凝固组织及力学性能研究[D].北京:清华大学,2007.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return