Citation: | ZHANG Jinglin, ZHANG Peizhi, QI Hai, GUO Fangquan, TIAN Yunlong, HAN Weiyue. Properties of High Solid Phase Content Zirconia Toughened Alumina Ceramic Slurry for Aqueous Gel-Casting and Sintered Ceramic[J]. Materials and Mechanical Engineering, 2024, 48(4): 89-94. DOI: 10.11973/jxgccl202404014 |
Zirconia toughened alumina (ZTA) ceramic slurries with high solid phase content (45%-57%, volume fraction) and different pH (1-12) were prepared under different zirconia mass fractions (25.0%, 27.5%, 30.0%) and dispersant additions (0.2%-0.4%, mass fraction). The effects of pH, dispersant addition and solid phase content on the rheological properties of the ceramic slurries were studied. Ceramic slurries containing different amounts of zirconia were prepared at the optimum pH and dispersant addition, and were molded by aqueous gel-casting, and then sintered at 1 600 ℃ under atmospheric pressure. The relative density and mechanical properties of the sintered ceramics were tested. The results show that when pH was 7-12, the Zeta potential and viscosity of ZTA ceramic slurry first decreased and then increased with the increase of pH. At pH of 9, the absolute value of Zeta potential was the largest and the viscosity was the smallest, indicating that the ceramic slurry was most stable. With the increase of dispersant additions, the viscosity of the slurry first decreased and then increased. With the increase of solid phase contents, the viscosity of the slurry increased. High solid phase content (45%-55%) ZTA ceramic slurries with good fluidity and low viscosity were prepared under pH of 9 and dispersant mass fraction of 0.3%. The slurries prepared under this condition were molded and sintered, and the relative density, bending strength and fracture toughness of the sintered ceramics were relatively high when the solid phase content was relatively high.
[1] |
王丽梅, 陈旸, 孟菲, 等. 氧化锆增韧氧化铝陶瓷托槽的研究现状[J]. 口腔材料器械杂志, 2016, 25(2): 99-101.
WANG L M, CHEN Y, MENG F, et al. The research status of Zirconia toughened Aluminum ceramic[J]. Chinese Journal of Dental Materials and Devices, 2016, 25(2): 99-101.
|
[2] |
OMATETE O O, JANNEY M, STREHLOW R. Gelcasting: A new ceramic forming process[J]. American Ceramic Society Bulletin, 1991, 70: 1641-1649.
|
[3] |
JANNEY M A, OMATETE O OMethod for molding ceramic powders using a water-based gel castingUS50283621991-07-02JANNEY M A, OMATETE O O. Method for molding ceramic powders using a water-based gel casting: US5028362[P]. 1991-07-02.
|
[4] |
BOCANEGRA-BERNAL M H, MATOVIC B. Dense and near-net-shape fabrication of Si3N4 ceramics[J]. Materials Science and Engineering: A, 2009, 500(1/2): 130-149.
|
[5] |
JANNEY M A, OMATETE O O, WALLS C A, et al. Development of low-toxicity gelcasting systems[J]. Journal of the American Ceramic Society, 1998, 81(3): 581-591.
|
[6] |
王琦, 崔巍, 葛一瑶, 等. 高固相含量氧化铝浆料的制备及其烧结性能研究[J]. 稀有金属材料与工程, 2013, 42(增刊1): 400-403.
WANG Q, CUI W, GE Y Y, et al. Study on preparation and sintering properties of alumina slurry with high solid content[J]. Rare Metal Materials and Engineering, 2013, 42(S1): 400-403.
|
[7] |
王亚利, 郝俊杰, 郭志猛, 等. 添加剂对凝胶注模成型工艺过程及坯体性质的影响[J]. 陶瓷学报, 2007, 28(1): 39-43.
WANG Y L, HAO J J, GUO Z M, et al. Effect of additives on gelcasting process and green body properties[J]. Journal of Ceramics, 2007, 28(1): 39-43.
|
[8] |
李莎莎, 李林, 贺智勇, 等. 高固含量氧化锆水系料浆的制备[J]. 耐火材料, 2018, 52(4): 268-272.
LI S S, LI L, HE Z Y, et al. Preparation of high solid content zirconia aqueous slurry[J]. Refractories, 2018, 52(4): 268-272.
|
[9] |
李文利, 周宏志, 刘卫卫, 等. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
LI W L, ZHOU H Z, LIU W W, et al. Research progress in ceramic slurries and rheology viaphotopolymerization-based 3D printing[J]. Journal of Materials Engineering, 2022, 50(7): 40-50.
|
[10] |
李绍纯, 耿永娟, 张启龙, 等. 添加剂对Li1. 075Nb0. 625Ti0. 45O3微波介质陶瓷水基流延浆料的影响[J]. 材料导报, 2010, 24(8): 54-57.
LI S C, GENG Y J, ZHANG Q L, et al. Influence of the slip composition on the properties of tape-cast Li1.075Nb0.625Ti0.45O3 aqueous slurry[J]. Materials Review, 2010, 24(8): 54-57.
|
[11] |
石成龙, 王琪慧, 秦亚茹, 等. SiO2粉末对立体光固化用SiC陶瓷浆料的影响研究[J]. 中国陶瓷, 2023, 59(2): 17-21.
SHI C L, WANG Q H, QIN Y R, et al. Study on the effect of SiO2 powder on SiC ceramic slurry for stereolithography[J]. China Ceramics, 2023, 59(2): 17-21.
|
[12] |
刘耀, 何宇, 辛峰, 等. 预混液成分对光固化成形氮化硅陶瓷力学性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(5): 417-423.
LIU Y, HE Y, XIN F, et al. Effect of premix ratio on mechanical properties of silicon nitride ceramics prepared by stereolithography[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(5): 417-423.
|
[13] |
王峰, 谢志鹏, 贾翠, 等. 高性能氮化硅陶瓷凝胶注模成型的研究[J]. 人工晶体学报, 2011, 40(3): 743-747.
WANG F, XIE Z P, JIA C, et al. Study on the process of Si3N4 ceramic with high properties by gel-casting[J]. Journal of Synthetic Crystals, 2011, 40(3): 743-747.
|
[14] |
刘坤不同二氧化硅微粉对水合氧化铝水化及浇注料性能的影响郑州郑州大学2020刘坤. 不同二氧化硅微粉对水合氧化铝水化及浇注料性能的影响[D]. 郑州: 郑州大学, 2020.
LIU KEffect of different silica fumes on hydration of hydrated alumina and properties of castablesZhengzhouZhengzhou University2020LIU K. Effect of different silica fumes on hydration of hydrated alumina and properties of castables[D]. Zhengzhou: Zhengzhou University, 2020.
|
[15] |
王跃飞, 严琳, 杨小兵, 等. 烟用二醋纤油剂性能研究[J]. 合成纤维, 2021, 50(4): 14-20.
WANG Y F, YAN L, YANG X B, et al. Study on performance of cellulose diacetate spinning oil[J]. Synthetic Fiber in China, 2021, 50(4): 14-20.
|
[16] |
KULIG M, GREIL P. Surface chemistry and suspension stability of oxide-nitride powder mixtures[J]. Journal of Materials Science, 1991, 26(1): 216-224.
|
[17] |
李颖, 迭杉杉, 李梦兰, 等. 分散剂用量对3D打印用氧化锆浆料分散性的影响[J]. 辽宁化工, 2019, 48(7): 612-614.
LI Y, DIE S S, LI M L, et al. Effect of dispersant content on dispersibility of zirconia slurry for 3D printing[J]. Liaoning Chemical Industry, 2019, 48(7): 612-614.
|
[18] |
HIDBER P C, GRAULE T J, GAUCKLER L J. Influence of the dispersant structure on properties of electrostatically stabilized aqueous alumina suspensions[J]. Journal of the European Ceramic Society, 1997, 17(2/3): 239-249.
|
[19] |
田云龙, 祁海, 张培志, 等. 水基凝胶注模制备高导热氮化硅陶瓷[J]. 硅酸盐学报, 2022, 50(9): 2351-2357.
TIAN Y L, QI H, ZHANG P Z, et al. Preparation of high thermal conductivity silicon nitride ceramic by aqueous gel-casting[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2351-2357.
|
[20] |
龚俊, 徐慧文, 宁会峰, 等. pH值和分散剂用量对钇稳定纳米氧化锆水基浆料分散性的影响[J]. 陶瓷, 2016(4): 30-33.
GONG J, XU H W, NING H F, et al. Effect of pH and dispersant content on dispersible of yttriastabilized zirconia nanometer water-based slurry[J]. Ceramics, 2016(4): 30-33.
|
[21] |
谢红佳, 张祥林, 熊妮, 等. 分散剂用量和pH值对纳米氧化锆水基浆料稳定性的影响[J]. 中国陶瓷, 2015, 51(4): 30-33.
XIE H J, ZHANG X L, XIONG N, et al. Effect of dispersant content and pH value on stability of nano-ZrO2 aqueous-based slurry[J]. China Ceramics, 2015, 51(4): 30-33.
|
[22] |
杨鸿辉, 赵程程, 王勇, 等. 凝胶推进剂及其流变特性研究进展[J]. 西安交通大学学报, 2022, 56(5): 166-179.
YANG H H, ZHAO C C, WANG Y, et al. Progress in study on gel propellants and their rheological properties[J]. Journal of Xi′an Jiaotong University, 2022, 56(5): 166-179.
|
[23] |
潘文轩, 玄伟东, 段方苗, 等. 聚乙烯醇纤维增强水溶性型芯的制备与性能[J]. 上海金属, 2022, 44(3): 44-48.
PAN W X, XUAN W D, DUAN F M, et al. Preparation and properties of water-soluble cores reinforced by polyvinyl alcohol fiber[J]. Shanghai Metals, 2022, 44(3): 44-48.
|
[24] |
李彬, 顾海, 张捷, 等. 固相含量对单螺杆挤出式3D打印PLZT陶瓷浆料流动性能的影响[J]. 机械工程材料, 2020, 44(11): 111-114.
LI B, GU H, ZHANG J, et al. Effect of solid content on PLZT ceramic slarry flowability in 3D printing by single screw extrusion mode[J]. Materials for Mechanical Engineering, 2020, 44(11): 111-114.
|
[25] |
梁慧燕, 郭英奎, 安勇良, 等. 固相含量对凝胶注模成型ZrO2陶瓷力学性能的影响[J]. 哈尔滨理工大学学报, 2009, 14(2): 111-114.
LIANG H Y, GUO Y K, AN Y L, et al. Solid content on gel-casting mechanical properties of ZrO2 ceramic[J]. Journal of Harbin University of Science and Technology, 2009, 14(2): 111-114.
|
[26] |
韩翔龙氧化锆增韧氧化铝(ZTA)纳米复合材料的制备与研究北京北京化工大学2015韩翔龙. 氧化锆增韧氧化铝(ZTA)纳米复合材料的制备与研究[D]. 北京: 北京化工大学, 2015.
HAN X LThe preparation and exploration of zirconia toughened alumina (ZTA) nanocompositesBeijingBeijing University of Chemical Technology2015HAN X L. The preparation and exploration of zirconia toughened alumina (ZTA) nanocomposites[D]. Beijing: Beijing University of Chemical Technology, 2015.
|