• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LEI Yue, CHEN Gaohong, HAO Min. Effect of Chemical Milling on Surface Morphology and Properties of 2524-T3 Aluminum Alloy Sheet[J]. Materials and Mechanical Engineering, 2024, 48(5): 33-37. DOI: 10.11973/jxgccl202405006
Citation: LEI Yue, CHEN Gaohong, HAO Min. Effect of Chemical Milling on Surface Morphology and Properties of 2524-T3 Aluminum Alloy Sheet[J]. Materials and Mechanical Engineering, 2024, 48(5): 33-37. DOI: 10.11973/jxgccl202405006

Effect of Chemical Milling on Surface Morphology and Properties of 2524-T3 Aluminum Alloy Sheet

More Information
  • Received Date: February 26, 2023
  • Revised Date: January 14, 2024
  • Chemical milling test of 2524-T3 aluminum alloy sheet was carried out. The surface morphology, tensile properties and fatigue properties of the sheet before and after chemical milling were studied. The results show that before chemical milling, the coarse second phase particles AlCuMg and oxides with size of 5-10 μm existed on surface of the sheet. After chemical milling, a large number of shallow corrosion pits with diameter of 10-50 μm, and micro-holes formed by stripped of the matrix after the second phase particles dissolving and stripping appeared on the surface resulting in the increase of surface roughness. Chemical milling had no significant effect on the room temperature tensile properties of sheet. The yield strength and tensile strength before and after chemical milling were not less than 330 MPa and 460 MPa, respectively, and the elongation percentage after fracture were kept above 20%. The fatigue strength of the sheet before and after chemical milling were 153.5 MPa and 138.3 MPa, respectively, and the fatigue strength of sheet after chemical milling was 9.9% lower than that before chemical milling.

  • [1]
    SHOU W B, YI D Q, LIU H Q, et al. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy[J]. Archives of Civil and Mechanical Engineering, 2016, 16(3): 304-312.
    [2]
    MADURO L P, BAPTISTA C A R P, TORRES M A S, et al. Modeling the growth of LT and TL-oriented fatigue cracks in longitudinally and transversely pre-strained Al2524-T3 alloy[J]. Procedia Engineering, 2011, 10: 1214-1219.
    [3]
    BOTVINA L R, NESTERENKO G I, SOLDATENKOV A P, et al. Development of short fatigue cracks in aluminum alloy 2524-T3 specimens[J]. Russian Metallurgy (Metally), 2017, 2017(4): 322-329.
    [4]
    SUBBA RAO B V, GOPI G, VIJEY I, et alDevelopment of aluminium alloy thin-walled sections by chemical milling processAdvances in Forming, Machining and AutomationSingaporeSpringer2023221230SUBBA RAO B V, GOPI G, VIJEY I, et al. Development of aluminium alloy thin-walled sections by chemical milling process[C]//Advances in Forming, Machining and Automation. Singapore: Springer, 2023: 221-230.
    [5]
    吴建云铝合金超精密化学铣切加工工艺研究南昌南昌航空大学2019吴建云 .铝合金超精密化学铣切加工工艺研究[D].南昌:南昌航空大学,2019.

    WU J YThe research on ultra-precision chemical milling process of aluminum alloyNanchangNanchang Hangkong University2019WU J Y. The research on ultra-precision chemical milling process of aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2019.
    [6]
    鲍经洋,王天星,刘世博,等 .铝合金化学铣切工艺研究现状[J].全面腐蚀控制,2022,36(2):46-47.

    BAO J Y, WANG T X, LIU S B, et al. Research status of chemical milling of aluminum alloy[J]. Total Corrosion Control, 2022, 36(2): 46-47.
    [7]
    SESANA R, SPRIANO S, FERRARIS S, et al. Fatigue resistance of light alloy sheets undergoing eco-friendly chemical milling: metallurgical and chemical aspects[J]. Procedia Structural Integrity, 2019, 19: 362-369.
    [8]
    张鑫,罗兵辉,柏振海,等 .Cu、Mg含量对2A12铝合金化铣粗糙度的影响[J].中国有色金属学报,2020,30(7):1502-1511.

    ZHANG X, LUO B H, BAI Z H, et al. Effect of Cu and Mg content on surface roughness of 2A12 Al alloy after chemical milling[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(7): 1502-1511.
    [9]
    付明,刘群 .2A12铝合金化学铣切加工工艺探讨[J].材料保护,2018,51(7):100-103.

    FU M, LIU Q. Chemical milling weight reduction process of 2A12 aluminum alloy wing[J]. Materials Protection, 2018, 51(7): 100-103.
    [10]
    孟莉莉,朱彦海,曾元松 .响应面法优化2A97铝锂合金化铣工艺的研究[J].表面技术,2017,46(7):255-261.

    MENG L L, ZHU Y H, ZENG Y S. Optimization of 2A97 Al-Li alloy chemical milling technology in response surface method[J]. Surface Technology, 2017, 46(7): 255-261.
    [11]
    刘凤娟,陈永来,于峰,等 .2195铝锂合金的化学铣切工艺优化[J].机械工程材料,2019,43(2):34-38.

    LIU F J, CHEN Y L, YU F, et al. Optimization of chemical milling process of 2195 Al-Li alloy[J]. Materials for Mechanical Engineering, 2019, 43(2): 34-38.
    [12]
    林翠,蔡剑,曾丰光,等 .LY12铝合金化铣工艺及加工质量影响因素[J].失效分析与预防,2010,5(1):8-12.

    LIN C, CAI J, ZENG F G, et al. Chemical milling technology and influencing factors of processing quality of LY12 aluminum alloy[J]. Failure Analysis and Prevention, 2010, 5(1): 8-12.
    [13]
    刘海全,许晓嫦,吴峰 .2524铝合金均匀化过程中的组织演变[J].材料热处理学报,2015,36(11):47-53.

    LIU H Q, XU X C, WU F. Evolution of microstructure of 2524 aluminum alloy during homogenization[J]. Transactions of Materials and Heat Treatment, 2015, 36(11): 47-53.
    [14]
    陈宇强,潘素平,易丹青,等 .2E12铝合金均匀化过程微观组织演变规律[J].中南大学学报(自然科学版),2017,48(2):316-324.

    CHEN Y Q, PAN S P, YI D Q, et al. Microstructure evolutions of 2E12 Al alloy during homogenization[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 316-324.
    [15]
    李政龙,冯旺 .2A12合金化铣样品表面粗晶形成机理研究[J].铝加工,2021(3):51-54.

    LI Z L, FENG W. Study on surface coarse grain deformation mechnism for 2A12 alloy chemical milling sample[J]. Aluminium Fabrication, 2021 (3): 51-54.
    [16]
    黄淑萍,何克准,胡海辉,等 .退火工艺对2024铝合金性能和化铣表面质量的影响[J].金属热处理,2018,43(8):170-173.

    HUANG S P, HE K Z, HU H H, et al. Effect of annealing process on mechanical properties and chemical milling surface of 2024 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(8): 170-173.
    [17]
    葛荣山,张永安,李志辉,等 .2E12和2524铝合金微观组织与疲劳裂纹扩展速率研究[J].稀有金属,2011,35(4):600-606.

    GE R S, ZHANG Y A, LI Z H, et al. Fatigue crack growth rate and microstructures of 2E12 and 2524 alloy[J]. Chinese Journal of Rare Metals, 2011, 35(4): 600-606.
    [18]
    LIU C, MA L Y, ZHANG Z Y, et al. Research on the corrosion fatigue property of 2524-T3 aluminum alloy[J]. Metals, 2021, 11(11): 1754.
    [19]
    陈宇强,易丹青,周明哲,等粗大第二相和晶界对于2524铝合金疲劳行为的影响第16届全国疲劳与断裂学术会议厦门中国力学学会20126566陈宇强,易丹青,周明哲,等 .粗大第二相和晶界对于2524铝合金疲劳行为的影响[C]//第16届全国疲劳与断裂学术会议.厦门:中国力学学会,2012:65-66.

    CHEN Y Q, YI D Q, ZHOU M Z, et alEffect of coarse second phase and grain boundary on fatigue behavior of 2524 aluminum alloyThe 16th National Conference on Fatigue and FractureXiamenThe Chinese Society of Theoretical and Applied Mechanics20126566CHEN Y Q, YI D Q, ZHOU M Z, et al. Effect of coarse second phase and grain boundary on fatigue behavior of 2524 aluminum alloy[C]//The 16th National Conference on Fatigue and Fracture. Xiamen: The Chinese Society of Theoretical and Applied Mechanics, 2012: 65-66.
    [20]
    胡晓青,房洪杰,王艳娟,等 .Ti和Ce对2524铝合金组织和力学性能的影响[J].金属热处理,2018,43(6):41-45.

    HU X Q, FANG H J, WANG Y J, et al. Effects of Ti and Ce content on microstructure and mechanical properties of 2524 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(6): 41-45.
    [21]
    DENG P, MO W F, RAN H W, et al. Effect of Sc and Zr on microstructure and chemical milling surface roughness of 2024-T6 alloy sheets[J]. Materials Chemistry and Physics, 2022, 292: 126815.
    [22]
    YOVIA L, JAMASR I, NOFENDRI Y, et al. The influence of shot penning on fatigue crack growth rate of chemical milling product Al-2524-T3 alloys which has been stretched[J]. IOP Conference Series: Materials Science and Engineering, 2020, 990(1): 012025.

Catalog

    Article views (12) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return