• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Zechen, CAO Tieshan, ZHAO Jie, LYU Dechao, CHENG Congqian. Cause of Poor Low Temperature Impact Toughness of S355NL Steel Wind Power Flange Forgings[J]. Materials and Mechanical Engineering, 2025, 49(3): 128-134. DOI: 10.11973/jxgccl230602
Citation: ZHANG Zechen, CAO Tieshan, ZHAO Jie, LYU Dechao, CHENG Congqian. Cause of Poor Low Temperature Impact Toughness of S355NL Steel Wind Power Flange Forgings[J]. Materials and Mechanical Engineering, 2025, 49(3): 128-134. DOI: 10.11973/jxgccl230602

Cause of Poor Low Temperature Impact Toughness of S355NL Steel Wind Power Flange Forgings

More Information
  • Received Date: December 20, 2023
  • Revised Date: September 04, 2024
  • The impact absorbed energy at −50 ℃ of a certain batch of S355NL steel flange forgings used in wind power from a factory were low and fluctuated significantly. The cause of poor impact toughness at low temperatures was analyzed by comparing the mechanical properties, fracture morphology, and microstructure of qualified and unqualified flange forgings and combining with the production process. The results show that the impact fracture of unqualified flange forgings was characterized by brittle fracture, the fiber section rate was almost 0, and the crack propagation path was relatively straight during the impact process. The impact fracture of qualified flange forgings was characterized by a mixture of ductile and brittle fracture morphology, the fiber section rate was 60%, and the crack propagation path was more tortuous. High normalizing temperature and long heating time in the furnace resulted in coarse grains and uneven grain size distribution, that was the main reason for poor temperature impact toughness of S355NL steel flange forgings. Uneven distribution of pearlite in the structure was another reason for the reduction of toughness of flange forgings.

  • [1]
    戈文英. 风电塔筒法兰用S355NL钢的低温冲击韧性[J]. 特殊钢,2015,36(5):47-50.

    GE W Y. Low temperature impact toughness of steel S355NL for wind power tower flange[J]. Special Steel,2015,36(5):47-50.
    [2]
    隋红霞,傅程. 低温型风力发电机组设计及认证要求[J]. 中国船检,2012(5):75-77.

    SUI H X ,FU C. Design and certification requirements of low temperature wind turbine[J]. China Ship Survey,2012(5):75-77.
    [3]
    马洪川典型F/B双相钢低温断裂韧性及裂纹扩展行为研究西安长安大学2022马洪川. 典型F/B双相钢低温断裂韧性及裂纹扩展行为研究[D]. 西安:长安大学,2022.

    MA H CResearch on low temperature fracture toughness and crack propagation behavior of typical F/B dual-phase steelsXi´anChangan University2022MA H C. Research on low temperature fracture toughness and crack propagation behavior of typical F/B dual-phase steels[D]. Xi´an:Changan University,2022.
    [4]
    张志慧,金涛,马立新,等. Q355C热轧H型钢低温冲击性能不合格的原因分析与对策[J]. 热加工工艺,2020,49(13):156-158.

    ZHANG Z H ,JIN T ,MA L X ,et al. Cause analysis and countermeasures of non-conformity of low-temperature impact properties of Q355C hot-rolled H-beam steel[J]. Hot Working Technology,2020,49(13):156-158.
    [5]
    陈一满,卢爱凤. S355 NL钢低温冲击韧度不合格原因分析[J]. 理化检验-物理分册,2017,53(1):73-76.

    CHEN Y M ,LU A F. Cause analysis of low-temperature impact toughness disqualification of S355NL steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2017,53(1):73-76.
    [6]
    何春静,庞庆海,李洁,等. 模拟正火温度对Q355E钢锻件组织和性能的影响[J]. 金属热处理,2022,47(6):123-127.

    HE C J ,PANG Q H ,LI J ,et al. Effect of simulated normalizing temperature on microstructure and properties of Q355 E steel forgings[J]. Heat Treatment of Metals,2022,47(6):123-127.
    [7]
    马林,张德勇,李伟,等. 厚规格正火轧制Q355NE钢板低温冲击性能研究[J]. 焊管,2023,46(9):49-52.

    MA L ,ZHANG D Y ,LI W ,et al. Low temperature impact properties of thick normalized rolling Q355NE steel plate[J]. Welded Pipe and Tube,2023,46(9):49-52.
    [8]
    李友彬. Q345E钢低温冲击性能不合格原因[J]. 理化检验-物理分册,2023,59(5):34-36.

    LI Y B. Reasons for unqualified low temperature impact properties of Q345E steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2023,59(5):34-36.
    [9]
    ZHOU J ,MA D S ,CHI H X ,et al. Microstructure and properties of hot working die steel H13MOD[J]. Journal of Iron and Steel Research,International,2013,20(9):117-125.
    [10]
    周惠久,黄明志. 金属材料强度学[M]. 北京:科学出版社,1989:63-67.

    ZHOU H J ,HUANG M Z. Strength of metal materials[M]. Beijing:Science Press,1989:63-67.
    [11]
    王磊. 材料的力学性能[M]. 4版. 北京:化学工业出版社,2022:159-160.

    WANG L. Mechanical properties of materials[M]. 4th ed. Beijing:Chemical Industry Press,2022:159-160.
    [12]
    HOFFMAN A K ,UMRETIYA R V ,CRAWFORD C ,et al. The relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys[J]. Materials Letters,2023,331:133427.
    [13]
    胡光立,谢希文. 钢的热处理:原理和工艺[M]. 5版. 西安:西北工业大学出版社,2016:32-35.

    HU G L ,XIE X W. Heat treatment of steel:Principle and technology[M]. 5th ed. Xi´an:Northwestern Polytechnical University Press,2016:32-35.
    [14]
    许天旱,罗皓荣. U165超高强度钻杆钢韧脆转变临界点的表征方法[J]. 材料热处理学报,2022,43(8):125-132.

    XU T H ,LUO H R. Characterization method of ductile-to-brittle transition critical point of U165 ultra-high strength drill pipe steel[J]. Transactions of Materials and Heat Treatment,2022,43(8):125-132.
    [15]
    段贺低温用高强度管线钢的组织控制及强韧化机理研究合肥中国科学技术大学202238段贺. 低温用高强度管线钢的组织控制及强韧化机理研究[D]. 合肥:中国科学技术大学,2022:38.

    DUAN HStudy on microstructure control and strengthening & toughening mechanism of high strength pipeline steel for low temperature applicationHefeiUniversity of Science and Technology of China202238DUAN H. Study on microstructure control and strengthening & toughening mechanism of high strength pipeline steel for low temperature application [D]. Hefei:University of Science and Technology of China,2022:38.
    [16]
    DUAN H ,SHAN Y Y ,YANG K ,et al. Effect of microstructure and crystallographic orientation characteristics on low temperature toughness and fracture behavior of pipeline steels[J]. Journal of Materials Research and Technology,2022,17:3172-3185.
    [17]
    LIU M M ,LIU Y L ,LI H. Deformation mechanism of ferrite in a low carbon Al-killed steel:Slip behavior,grain boundary evolution and GND development[J]. Materials Science and Engineering:A,2022,842:143093.
    [18]
    ZHANG Y H ,GUO X C ,FU B G ,et al. Microstructure and low-temperature impact fracture behavior of QT400-18AL containing Ni[J]. Materials Science and Engineering:A,2023,880:145327.
    [19]
    潘中德,郭甲男,胡其龙. 正火温度轧制和正火处理的S355NL钢板的力学性能和显微组织[J]. 上海金属,2022,44(2):61-64.

    PAN Z D ,GUO J N ,HU Q L. Mechanical properties and microstructure of S355NL steel plate rolled at normalized temperature and normalized[J]. Shanghai Metals,2022,44(2):61-64.
    [20]
    张健,欧阳鑫,胡昕明,等. 模拟焊后热处理次数对Q345R钢板力学性能的影响[J]. 鞍钢技术,2021(4):30-32.

    ZHANG J ,OUYANG X ,HU X M ,et al. Effect of simulating post-weld heat treatment times on mechanical properties of Q345R steel plate[J]. Angang Technology,2021(4):30-32.

Catalog

    Article views (10) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return