• 中文核心期刊
  • CA、AA收录期刊
  • 中国机械工程学会理化检验分会会刊
Advanced Search
LIU Lijing, YANG Yan, ZHANG Wenting, LIN Qi. Simultaneous Determination of Chlorite, Chlorate and Perchlorate in Drinking Water by Ion Chromatography[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2021, 57(3): 247-251. DOI: 10.11973/lhjy-hx202103010
Citation: LIU Lijing, YANG Yan, ZHANG Wenting, LIN Qi. Simultaneous Determination of Chlorite, Chlorate and Perchlorate in Drinking Water by Ion Chromatography[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART B:CHEMICAL ANALYSIS, 2021, 57(3): 247-251. DOI: 10.11973/lhjy-hx202103010

Simultaneous Determination of Chlorite, Chlorate and Perchlorate in Drinking Water by Ion Chromatography

More Information
  • Received Date: March 24, 2020
  • A method for simultaneous determination of chlorite, chlorate and perchlorate in drinking water was established by ion chromatography. The sample was filtered by 0.22μm qeuosystem filter membrane, and then introduced into ion chromatography with sample injection of 500μL. IonPac AS20 anion exchange column was used for separation with KOH solution for online gradient elution, and electrolytic conductivity detector was used for determination. The results showed that linearity ranges of chlorite, chlorate and perchlorate were found in the same range of 0.005-0.750 mg·L-1, with detection limits (3S/N) of 0.78, 0.56, 1.50μg·L-1. Test for recorery was made by standard addition method on the actual water samples at three concentration levels, giving recoveries in the ranges of 88.0%-104%, 89.0%-97.4%, 89.2%-94.9%, and RSDs (n=6) of the determined values were all less than 2.0%. The proposed method was used for the analysis of 36 samples composed of 12 tap water, 12 bottled water and 12 well water, and the average detection rates of chlorite, chlorate and perchlorate were 22.2%, 55.6%, 38.9%, with their residual values all less than the standard limits (0.7, 0.7, 0.07 mg·L-1).
  • [1]
    吕佳,岳银玲,张岚.国内外饮用水消毒技术应用与优化研究进展[J].中国公共卫生, 2017,33(3):428-432.
    [2]
    赵玉丽,李杏放.饮用水消毒副产物:化学特征与毒性[J].环境化学, 2011,30(1):20-33.
    [3]
    董淑江,高蓉.饮用水消毒副产物研究进展[J].职业与健康, 2014,30(24):3628-3631.
    [4]
    吴春笃,李顺,许小红,等.高氯酸盐的环境毒理学效应及其机制的研究进展[J].环境与健康杂志, 2013,30(1):85-89.
    [5]
    王荣.高氯酸盐在环境介质中的污染水平研究进展[J].四川化工, 2016,19(6):39-42.
    [6]
    KUMARATHILAKA P, OZE C, INDRARATNE S P, et al. Perchlorate as an emerging contaminant in soil, water and food[J]. Chemosphere, 2016,150:667-677.
    [7]
    宋正规,沈坚,张爱芝,等.高氯酸盐毒性及其检测方法研究进展[J].食品工业科技, 2018,39(8):341-347.
    [8]
    MCDOUGAL J N, JONES K L, FATUYI B, et al. The effects of perchlorate on thyroidal gene expression are different from the effects of iodide deficiency[J]. Journal of Toxicology and Environmental Health, Part A, 2011,74(14):917-926.
    [9]
    PLEUS R C, COREY L M. Environmental exposure to perchlorate:A review of toxicology and human health[J]. Toxicology and Applied Pharmacology, 2018,358:102-109.
    [10]
    World Health Organization. Guidelines for Drinking-water Quality[S]. 4th ed. Geneva:World Health Organization, 2017.
    [11]
    CAO F F, JAUNAT J, STURCHIO N, et al. Worldwide occurrence and origin of perchlorate ion in waters:A review[J]. Science of the Total Environment, 2019,661:737-749.
    [12]
    SIJIMOL M R, MOHAN M, DINEEP D. Perchlorate contamination in bottled and other drinking water sources of Kerala, southwest coast of India[J]. Energy, Ecology and Environment, 2016,1(3):148-156.
    [13]
    MAVROUDAKIS L, MAVRAKIS E, KOUVARAKIS A, et al. Determination of chlorate, perchlorate and bromate anions in water samples by microbore reversed-phase liquid chromatography coupled to sonic-spray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2017,31(11):911-918.
    [14]
    谢永洪,杨坪,钱蜀,等.高效液相色谱-电喷雾离子源-串联三重四极杆质谱法分析地表水中高氯酸盐[J].中国环境监测, 2014,30(1):164-168.
    [15]
    史亚利,刘肖,张萍,等.离子色谱-质谱联用技术测定饮用水及环境水样中的痕量高氯酸盐[J].分析试验室, 2007,26(4):34-37.
    [16]
    张振城,于雪荣,单晓梅,等.饮用水中高氯酸盐的离子色谱测定法[J].职业与健康, 2018,34(1):40-43.
    [17]
    王会霞.离子色谱法测定水中亚氯酸盐、氯酸盐和高氯酸盐[J].中国卫生检验杂志, 2015,25(19):3250-3252.
    [18]
    张萍,史亚利,蔡亚岐,等.大体积进样离子色谱法测定环境水样中高氯酸根[J].分析化学, 2006,34(11):1575-1578.
    [19]
    王真,郭怀成,郁亚娟,等.离子色谱法-抑制型电导检测城市污水中的高氯酸根[J].中国环境监测, 2009,25(5):31-34.
    [20]
    黄雨榴,李小倩,方玲,等.改进离子色谱法测定水样中高氯酸盐、氯酸盐和亚氯酸盐[J].环境科学与技术, 2017,40(5):126-130.
  • Cited by

    Periodical cited type(12)

    1. 侯婧,刘双德. 同位素内标稀释-UPLC-MS/MS法同时测定生活饮用水中5种消毒副产物和高氯酸盐. 化学试剂. 2025(01): 67-73 .
    2. 李新红,李忠. 饮用水中离子色谱法检测的应用进展. 中国卫生标准管理. 2024(08): 21-24 .
    3. 孙瑞贞,皇甫素慧,李静虹. 离子色谱法同时快速测定生活饮用水中9种化合物. 化学分析计量. 2024(06): 73-77 .
    4. 叶明立,赵国花,王勇,林季润,刘文鑫,卢捷,赵永纲,曹攽. 离子交换色谱-串联质谱法快速测定茶叶中氯酸盐和高氯酸盐. 色谱. 2024(09): 875-880 .
    5. 陈鸿剑,康婕,樊成,李媛,张利娟,邹力. 婴幼儿配方羊乳粉中氯酸盐污染途径及排查分析. 食品工业. 2023(03): 64-69 .
    6. 王禹衡,卢思佳,张婧文,于素华,杨瑞琴,王勇. 快速溶剂萃取-离子色谱-质谱法同时测定爆炸尘土中的氯酸盐和高氯酸盐. 分析试验室. 2023(04): 474-479 .
    7. 于艳丽,李杰. 高效液相色谱-串联质谱法测定肉类中的氯酸盐和高氯酸盐. 食品工业科技. 2023(11): 265-270 .
    8. 高圣华,安伟,杨敏,叶必雄,张岚. 《生活饮用水卫生标准(GB5749-2022)》中高氯酸盐标准限值的制定研究. 中华预防医学杂志. 2023(06): 823-825 .
    9. 时雪峰,王建树,乔宇飞. 同位素稀释超高效液相色谱-串联质谱法测定怀山药中的高氯酸盐和氯酸盐. 中国药物与临床. 2023(05): 321-325 .
    10. 吴云钊,乔庆东,孙潇,张晨,曹民,庄景新. 鸡蛋中高氯酸盐和氯酸盐残留量的高效液相色谱-串联质谱同时测定法. 职业与健康. 2022(09): 1193-1197 .
    11. 林强,杨超,李美丽,王佳,侯瀚然,邵兵,牛宇敏. 冷冻诱导液液萃取-超高效液相色谱-四极杆静电场轨道阱高分辨质谱法检测液态奶中氯酸盐和高氯酸盐. 食品安全质量检测学报. 2022(10): 3259-3265 .
    12. 张明辉,贾舸,乔为仓,赵军英,王亚玲,陈历俊. 离子色谱-串联质谱检测牛奶和婴幼儿配方乳粉中的氯酸盐和高氯酸盐. 中国食品学报. 2022(09): 239-247 .

    Other cited types(1)

Catalog

    Article views (10) PDF downloads (6) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return