Citation: | CHEN Xi, XIONG Hongjian, WU Wei, WU Guanhua, ZHOU Zhenggan. Effects of Solution Temperature on Microstructure and Ultrasonic Properties of GH4169[J]. Nondestructive Testing, 2018, 40(4): 7-12. DOI: 10.11973/wsjc201804002 |
[1] |
师昌绪,仲增墉. 我国高温合金的发展与创新[J]. 金属学报, 2010, 46(11):1281-1288.
|
[2] |
TOOZANDEHJANI M, MATORI K A, OSTOVAN F, et al. On the correlation between microstructural evolution and ultrasonic properties:a review[J]. Journal of Materials Science, 2015, 50(7):2643-2665.
|
[3] |
VIJAYALAKSHMI K, MUTHUPANDI V, JAYACHITRA. Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel[J]. Materials Science & Engineering A, 2011, 529(1):447-451.
|
[4] |
ÖZKAN V, I·SMAIL H S, EROL A, et al. Influence of mean grain size with ultrasonic velocity on microhardness of B4C-Fe-Ni composite[J]. Journal of Alloys & Compounds, 2013, 574(3):512-519.
|
[5] |
ÖZKAN V, SARPVN Í H. Examining with the sintered temperature of mean grain size of B4C-Al-Ni composites by ultrasonic techniques[J]. Acta Physica Polonica A, 2012, 121(1):184-186.
|
[6] |
AGHAIE-KHAFRI M, HONARVAR F, ZANGANEH S. Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements[J]. Journal of Nondestructive Evaluation, 2012, 31(3):191-196.
|
[7] |
VIJAYALAKSHMI K, MUTHUPANDI V, JAYACHITRA R. Influence of heat treatment on the microstructure, ultrasonic attenuation and hardness of SAF 2205 duplex stainless steel[J]. Materials Science and Engineering A, 2011, 529(1):447-451.
|
[8] |
RUIZ A, ORTIZ N, MEDINA A, et al. Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel[J]. Ndt & E International, 2013, 54(3):19-26.
|
[9] |
FREITAS V L D A, ALBUQUERQUE V H C D, SILVA E D M, et al. Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements[J]. Materials Science & Engineering A, 2010, 527(16):4431-4437.
|
[10] |
ALBUQUERQUE V H C D, SILVA E D M, LEITE J P, et al. Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurements[J]. Materials & Design, 2010, 31(4):2147-2150.
|
[11] |
SILVA E D M, ALBUQUERQUE V H C D, LEITE J P, et al. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing[J]. Materials Science & Engineering A, 2009, 516(1/2):126-130.
|
[12] |
占连扬,刘柯,杨友杰,等. 球墨铸铁QT400-18的石墨球化率对超声声速的影响[J]. 无损检测, 2017, 39(11):36-38.
|
[13] |
时靖,刘柯,邬冠华,等. 锻造参数对TC4锻件的组织和超声声速的影响[J]. 无损检测, 2017, 39(10):24-27.
|
[14] |
DU Hualong, LONSDALE C, OLIVER J, et al. Evaluation of railroad wheel steel with lamellar duplex microstructures using diffuse ultrasonic backscatter[J]. Journal of Nondestructive Evaluation, 2013, 32(4):331-340.
|
[15] |
TITTMANN B R, ABDEL-GAWAD M, FERTIG K. Ultrasonic characterization of microstructure in powder metal alloy[J]. Journal of the Acoustical Society of America, 1984, 76(2):119-133.
|
[16] |
YANG L, LI J, LOBKIS O I, et al. Ultrasonic propagation and scattering in duplex microstructures with application to titanium alloys[J]. Journal of Nondestructive Evaluation, 2012, 31(3):270-283.
|
[17] |
宋永锋, 李雄兵, 吴海平,等. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法[J]. 金属学报, 2016, 52(3):378-384.
|
[18] |
CAI Yeqing, SUN Jinzhong, LIU Chengjie, et al. Relationship between dislocation density in P91 steel and its nonlinear ultrasonic parameter[J]. Journal of Iron and Steel Research(International), 2015, 22(11):51-57.
|