• 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
Advanced Search
FENG Bo, WU Jianbo, QIU Gongzhe, KANG Yihua. Development of high-speed magnetic flux leakage testing method[J]. Nondestructive Testing, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012
Citation: FENG Bo, WU Jianbo, QIU Gongzhe, KANG Yihua. Development of high-speed magnetic flux leakage testing method[J]. Nondestructive Testing, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012

Development of high-speed magnetic flux leakage testing method

More Information
  • Received Date: July 24, 2020
  • Magnetic flux leakage (MFL) testing method has been successfully applied in the inspection of various ferromagnetic materials. However, the development of modern manufacturing technology and new application areas brought new challenges in the testing speed of MFL testing. The distortion of MFL signals in high speed testing limits the testing speed. Therefore, many researchers studied the mechanism of signal distortion and found that the time-lag in magnetization was the main reason to affect the MFL signal. When the steel pipe passing through the magnetizing coil at a high speed, the eddy current will influence the magnetization of pipe wall and further influence the MFL signal. Based on the mechanism study, methods such as increasing coil length and using multi-stage magnetization have been proposed to reduce the distortion of MFL signals at high speed. Velocity induced eddy current testing method and velocity induced eddy current thermography have also been proposed and achieved good results in high speed testing.
  • [1]
    WANG Z D,GU Y,WANG Y S. A review of three magnetic NDT technologies[J]. Journal of Magnetism & Magnetic Materials,2012,324(4):382-388.
    [2]
    PANDEY M D. Probabilistic models for condition assessment of oil and gas pipelines[J]. NDT & E International,1998,31(5):349-358.
    [3]
    RYU K S,ATHERTON D L,CLAPHAM L. Effect of bulk stress and pit depth on calculated far and near-side magnetic flux leakage pit signals[J]. Insight:Non-destructive Testing and Condition Monitoring,2002,44(5):285-288.
    [4]
    HWANG K,MANDATAM S,UDPA S S,et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NDT & E International,2000,33(8):531-545.
    [5]
    POHL R,ERHARD A,MONTAG H J. NDT techniques for railroad wheel and gauge corner inspection[J]. NDT & E International,2004,37(2):89-94.
    [6]
    CHRISTEN R,BERGAMINI A,MOTAVALLI M. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges[J]. NDT & E International,2009,42(1):22-27.
    [7]
    王阳生, 叶兆国,师汉民,等. 钢丝绳在线定量监测系统[J]. 无损检测,1989,11(6):153-156.
    [8]
    刘克明, 李劲松,卢文祥,等. 钢丝绳断丝无损探伤原理及探伤系统信号预处理装置的研究[J]. 强度与环境,1988(3):17-22.
    [9]
    李劲松, 刘克明,卢文样,等. 钢丝绳断丝探伤传感器的研制[J]. 华中理工大学学报,1988(3):75-80.
    [10]
    白坚, 王平,邹朋朋. 基于轨面适应承载机构的钢轨表面缺陷的漏磁检测[J]. 无损检测,2017,39(11):16-19.
    [11]
    谢菲, 孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.
    [12]
    单阳. 基于隧道磁传感器在电梯钢丝绳检测中的应用研究[D]. 昆明:昆明理工大学,2018.
    [13]
    SUN Y H, FENG B,YE Z J,et al. Change trends of magnetic flux leakage with increasing magnetic excitation[J]. Insight:Non-destructive Testing and Condition Monitoring,2015,57(12):1-8.
    [14]
    冯搏,康宜华,汤祺,等. 涡流引起的钢棒磁化滞后时间理论计算[J]. 机械工程学报,2015,51(22):135-140.
    [15]
    FENG B,KANG Y H,SUN Y H,et al. Magnetization time lag caused by eddy currents and its influence on high-speed MFL testing[J]. Research in Nondestructive Evaluation,2019,30(4):189-204.
    [16]
    杨理践,耿浩,高松巍,等.高速漏磁检测饱和场建立过程及影响因素研究[J].仪器仪表学报,2019,40(10):1-9.
    [17]
    MANDAYAM S,UDPA L. Invariance transformations for magnetic flux leakage signals[J]. IEEE Transactions on Magnetics,1996,32(3):1577-1580.
    [18]
    SHIN Y K. Numerical prediction of operating conditions for magnetic flux leakage inspection of moving steel sheets[J]. IEEE Transactions on Magnetics,1997,33(2):2127-2130.
    [19]
    PARK G S,PARK S H. Analysis of the velocity-induced eddy current in MFL type NDT[J]. IEEE Transactions on Magnetics,2004,40(2):663-666.
    [20]
    LI Y,TIAN G Y,WARD S. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT&E International,2006,39:367-373.
    [21]
    DU Z Y,RUAN J J,PENG Y,et al. 3D FEM simulation of velocity effects on magnetic flux leakage testing signals[J]. IEEE Transactions on Magnetics,2008,44(6):1642-1645.
    [22]
    PULLEN A L,CHARLTON P C,PEARSON N R,et al. Practical evaluation of velocity effects on the magnetic flux leakage technique for storage tank inspection[J]. Insight:Non-destructive Testing and Condition Monitoring,2020,62(2):73-80.
    [23]
    冯搏. 钢管漏磁检测中的动生涡流影响机理及其应用[D]. 武汉:华中科技大学,2016.
    [24]
    杨理践, 耿浩,高松巍.基于多级磁化的高速漏磁检测技术研究[J]. 仪器仪表学报,2018,39(6):148-156.
    [25]
    USAREK Z,CHMIELEWSKI M,PIOTROWSKI L. Reduction of the velocity impact on the magnetic flux leakage signal[J]. Journal of Nondestructive Evaluation,2019,38(1):28.
    [26]
    FENG B,KANG Y H,SUN Y H. Theoretical analysis and numerical simulation of the feasibility of inspecting nonferromagnetic conductors by an MFL testing apparatus[J]. Research in Nondestructive Evaluation,2016,27(2):100-111.
    [27]
    夏慧, 伍剑波,黄晓明,等. 磁场运动速度对动生涡流热成像的影响[J]. 无损检测,2018,40(12):1-6.

Catalog

    Article views (23) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return