Citation: | LUO Ying, ZHANG Yifeng, JIANG Jiansheng. Image preprocessing technology for defects of radiographic testing film[J]. Nondestructive Testing, 2024, 46(2): 22-28. DOI: 10.11973/wsjc202402005 |
Image recognition technology is one of the typical application scenarios of artificial intelligence in the field of weld seam radiographic testing. Conducting research and application of image recognition technology in industrial weld seam detection and intelligent monitoring is of great significance for promoting the intelligent development of non-destructive testing. The preprocessing of defect images in radiographic testing can simplify complex images in a short period of time, laying a solid foundation for subsequent defect recognition. Due to the narrow gray range, low contrast, and high noise in the original X-ray detection image, different denoising and contrast enhancement image preprocessing methods were used to solve this problem. X-ray film preprocessing experiments were conducted, and parameters were optimized and algorithms were improved based on actual detection results. The experimental results showed that in terms of noise reduction, the median Gaussian combination filter had a better noise reduction effect; In terms of contrast enhancement, linear transformation had a better effect on contrast enhancement.
[1] |
SHAO J, DU D, SHI H, et al. Automatic weld defect detection based on X-ray images of thick-wall workpieces[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(2):150-154.
|
[2] |
DAUM W, ROSE P, HEIDT H, et al. Automatic recognition of weld degects in X-ray inspection[J]. British Journal of Non-Destructive Testing, 1987, 29(2):79-82.
|
[3] |
GAYER A, SAYA A, SHILOH A. Automatic recognition of welding defects in real-time radiography[J]. NDT International, 1990, 23(3):131-136.
|
[4] |
KAFTANDJIAN V, DUPUIS O, BABOT D, et al. Uncertainty modelling using Dempster-Shafer theory for improving detection of weld defects[J]. Pattern Recognition Letters, 2003, 24(3):547-564.
|
[5] |
ZHANG K,ZUO W M,GU S H,et alLearning deep CNN denoiser prior for image restoration2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu,HI,USAIEEE2017ZHANG K ,ZUO W M ,GU S H ,et al .Learning deep CNN denoiser prior for image restoration[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE:2017.
|
[6] |
YU J, TAN L, ZHOU S, et al. Image Denoising Algorithm Based on Entropy and Adaptive Fractional Order Calculus Operator[J]. IEEE Access, 2017, 5:12275-12285.
|
[7] |
MURAKAMI K. Image processing for non-destructive testing[J].Welding International, 1990, 4(2):144-149.
|
[8] |
ZOU Y, DONG D, CHANG B, et al. Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe[J]. NDT & E International, 2015, 72(6):1-9.
|
[9] |
刘瑛, 赵岚. 基于局部统计参数的复数图像降噪算法[J]. 计算机仿真,2021,38(3):122-125.
|
[10] |
王加, 周永康, 胡健钏, 等. 一种基于粗糙集的红外图像多维降噪算法[J]. 红外技术,2021,43(1):44-50.
|
[11] |
KEHOE A, PARKER G A.Image processing for industrial radiographic inspextion: image enhancement[J].British Jounal of Non-Destructive Testing,1990,(4):183-190
|
[12] |
ZHANG L, SHEN P, PENG X, et al. Simultaneous enhancement and noise reduction of a single low-light image[J]. IET Image Processing, 2016,10(11): 840-847.
|
[13] |
ABIKO R,IKEHARA MBlind denoising of mixed gaussian-impulse noise by single CNNICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP)Brighton,UKIEEE2019ABIKO R ,IKEHARA M .Blind denoising of mixed gaussian-impulse noise by single CNN[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Brighton,UK.IEEE:2019.
|
[14] |
SINGH H, KUMAR A, BALYAN L K, et al. A novel optimally weighted framework of piecewise gamma corrected fractional order masking for satellite image enhancement[J].Computers & Electrical Engineering, 2017: 245-261.
|
[15] |
CHEN B, WU Y, SHI L, et al. A fast image contrast enhancement algorithm using entropy-preserving mapping prior[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019,29(1): 38-49.
|
[16] |
王萍, 孙振明. 多级分解的Retinex低照度图像增强算法[J]. 计算机应用研究,2020,37(4):1204-1209.
|
[17] |
黄果, 许黎, 陈庆利, 等. 非局部多尺度分数阶微分图像增强算法研究[J]. 电子与信息学报,2019,41(12):2972-2979.
|
[18] |
张江鑫, 杨惠. 基于同态高低通滤波与多尺度Retinex的低照度彩色图像增强[J]. 计算机应用与软件,2021,38(1):232-237.
|
[19] |
张子夜, 蒲恬, 高原. 基于人眼视觉响应的低光照图像增强[J]. 兵工自动化,2021,40(2):53-57.
|
[20] |
何山, 赵越, 乔孟锐. 基于机器学习的压缩域图像均衡增强方法[J]. 计算机仿真,2021,38(3):108-112.
|
[21] |
张翔松, 高炜欣, 穆向阳, 等. X射线环焊缝图像降噪及增强方法研究[J]. 激光杂志,2021,42(3):79-85.
|
[22] |
杨先凤, 李小兰, 贵红军. 改进的自适应伽马变换图像增强算法仿真[J]. 计算机仿真,2020,37(5):241-245.
|
[23] |
冯鸣, 刘祎, 张鹏程, 等. 改进反锐化掩模的自适应图像增强算法[J]. 测试技术学报,2020,34(1):48-53.
|
[24] |
侯力铭图像去模糊与图像增强的研究重庆重庆邮电大学2018侯力铭. 图像去模糊与图像增强的研究[D]. 重庆:重庆邮电大学,2018.
|
[25] |
佟彤基于X射线图像的焊缝缺陷检测和识别研究上海上海交通大学2014佟彤. 基于X射线图像的焊缝缺陷检测和识别研究[D]. 上海:上海交通大学,2014.
|
[26] |
尚泽强基于射线图像的焊接缺陷智能检测研究哈尔滨哈尔滨工业大学2021尚泽强. 基于射线图像的焊接缺陷智能检测研究[D]. 哈尔滨:哈尔滨工业大学,2021.
|