• 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
Advanced Search
CAO Yang, YANG Ao, ZHAI Boyuan, NIE Fusong, WEN Jiagang. Prediction of asphalt pavement subsidence development based on BP neural network[J]. Nondestructive Testing, 2024, 46(4): 48-52. DOI: 10.11973/wsjc202404009
Citation: CAO Yang, YANG Ao, ZHAI Boyuan, NIE Fusong, WEN Jiagang. Prediction of asphalt pavement subsidence development based on BP neural network[J]. Nondestructive Testing, 2024, 46(4): 48-52. DOI: 10.11973/wsjc202404009

Prediction of asphalt pavement subsidence development based on BP neural network

More Information
  • Received Date: October 17, 2023
  • To enhance the efficiency of asphalt pavement inspection, the pavement subsidence data from a specific section and station number of an asphalt road were taken as research targets. A fitting and prediction of the development of asphalt road subsidence on the highway was conducted based on the BP neural network. The results showed that BP neural network model can effectively predict road subsidence. The predictive accuracy of the neural network model was steadily improved with an increase in the training data set. Considering engineering efficiency and predictive accuracy, it was recommended to use 32 sets of data as the optimal sample size. The predictive accuracy of the BP neural network model was significantly higher than that of the quadratic curve method, with a relative error reduction of up to 5%. The study confirmed the feasibility and effectiveness of the BP neural network model in predicting the development of pavement subsidence, providing a new method for investigating the development of asphalt pavement subsidence on highways.

  • [1]
    HEINZ E ,ELING C ,KLINGBEIL L ,et al .On the applicability of a scan-based mobile mapping system for monitoring the planarity and subsidence of road surfaces-Pilot study on the A44n motorway in Germany[J].Journal of Applied Geodesy, 2020, 14(1):39-54.
    [2]
    ZAHARI E .A study on the existence of ground subsidence under road pavement using ground penetrating radar[J].International Journal of Advanced and Applied Sciences, 2017, 4(12):42-46.
    [3]
    何鎏 .道路沉陷探测中高密度地震映像的应用研究[J].低碳世界, 2019, 9(2):69-70.
    [4]
    朱能发,丁素兰,孙士辉 .高密度地震映像在道路沉陷探测中的应用[J].工程地球物理学报, 2013, 10(2):248-250.
    [5]
    胡习阳,曾志雄,符梁,等 .张桑高速公路路基沉降预测方法研究[J].公路工程, 2018, 43(4):278-282.
    [6]
    朱燕飞,楚友洋,李传江 .BP神经网络优化参数的螺杆点胶阀无模型自适应控制技术[J].液压与气动, 2023, 47(9):175-181.
    [7]
    张延兵,宋高峰 .基于BP神经网络训练的储罐底板声发射检测评价方法[J].无损检测, 2020, 42(5):24-27,33.
    [8]
    崔振东,周博 .基于模糊层次分析法的多年冻土路基冻融沉陷评价[J].公路交通科技(应用技术版), 2017, 13(7):135-140.
    [9]
    王兆文 .基于模糊层次分析法的市政道路桥梁工程施工质量评估及预防措施[J].黑龙江科学, 2023, 14(9):152-154.
    [10]
    张振 .应用价值工程原理和德尔菲法进行高速公路桥梁选型[J].辽宁省交通高等专科学校学报, 2019, 21(1):1-4.
    [11]
    范婕 .关于高速公路沥青路面沉陷养护与防治技术的应用分析[J].黑龙江交通科技, 2019, 42(6):61-62.
    [12]
    林道力.公路工程路基路面病害治理措施[J].黑龙江交通科技,2021,44(3):59-60.
    [13]
    吴东,张宝金,隋显俊,等 .基于自适应移位平均降噪与BP神经网络的钢丝绳损伤识别[J].无损检测, 2022, 44(8):14-19.
    [14]
    谌文武,徐彦荣 .浸水型病害引起黄土地基沉降的离心模型试验及修正双曲线估算法[J].兰州大学学报(自然科学版), 2019, 55(3):333-339,346.

Catalog

    Article views (17) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return