• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

6061/5052异种铝合金钨极惰性气体保护焊接头的组织与性能

梁成成, 冯锡峰, 林思洙, 聂建辉

梁成成, 冯锡峰, 林思洙, 聂建辉. 6061/5052异种铝合金钨极惰性气体保护焊接头的组织与性能[J]. 机械工程材料, 2024, 48(8): 30-34. DOI: 10.11973/jxgccl230405
引用本文: 梁成成, 冯锡峰, 林思洙, 聂建辉. 6061/5052异种铝合金钨极惰性气体保护焊接头的组织与性能[J]. 机械工程材料, 2024, 48(8): 30-34. DOI: 10.11973/jxgccl230405
LIANG Chengcheng, FENG Xifeng, LIN Sizhu, NIE Jianhui. Microstructure and Property of Tungsten Inert Gas Welded Joint of 6061/5052 Dissimilar Aluminum Alloys[J]. Materials and Mechanical Engineering, 2024, 48(8): 30-34. DOI: 10.11973/jxgccl230405
Citation: LIANG Chengcheng, FENG Xifeng, LIN Sizhu, NIE Jianhui. Microstructure and Property of Tungsten Inert Gas Welded Joint of 6061/5052 Dissimilar Aluminum Alloys[J]. Materials and Mechanical Engineering, 2024, 48(8): 30-34. DOI: 10.11973/jxgccl230405

6061/5052异种铝合金钨极惰性气体保护焊接头的组织与性能

基金项目: 

山西省高等学校科技创新项目 2023L565

山西省教育科学“十四五”规划项目 GH-220519

山西省高等学校科技创新项目 2022L699

详细信息
    作者简介:

    梁成成(1987—),男,河北沧州人,讲师,硕士

  • 中图分类号: TG146.2

Microstructure and Property of Tungsten Inert Gas Welded Joint of 6061/5052 Dissimilar Aluminum Alloys

  • 摘要:

    制备了6061/5052异种铝合金钨极惰性气体保护焊(TIG)接头,研究了接头的显微组织、晶粒尺寸、硬度、抗应力腐蚀性能和预腐蚀疲劳性能。结果表明:6061铝合金母材,焊缝和5052铝合金母材的平均晶粒尺寸分别为38.42,47.13,41.17 µm;母材区显微硬度高于热影响区和焊缝区,硬度最小值(51 HV)出现在6061铝合金侧热影响区;接头在NaCl溶液和空气中应力腐蚀后,断裂位置均在6061铝合金侧距焊缝中心14 mm处,在NaCl溶液中的抗拉强度、屈服强度和断后伸长率略高于在空气中,抗应力腐蚀性能略强;随着NaCl溶液中HCl含量增加,焊接接头的晶间腐蚀深度增加,疲劳寿命缩短,断裂位置由焊缝区向5052铝合金母材转变。

    Abstract:

    Tungsten inert gas (TIG) welded joint of 6061/5052 dissimilar aluminum alloys was prepared. The microstructure, grain size, hardness, stress corrosion resistance and pre-corrosion fatigue properties of the joint were studied. The results show that the average grain size of 6061 aluminum alloy base metal, weld and 5052 aluminum alloy base metal was 38.42, 47.13, 41.17 µm, respectively. The microhardness of base metal was higher than that of heat affected zone and weld zone, and the minimum hardness (51 HV) appeared in the heat affected zone on the side of 6061 aluminum alloy. The fracture location of the joint was at the position which was 14 mm away from the weld center on the side of 6061 aluminum alloy after stress corrosing in both NaCl solution and air, and the tensile strength, yield strength, percentage elongation after fracture and corrosion resistance property in NaCl solution were slightly higher than those in air. With the increase of HCl content in NaCl solution, the intergranular corrosion depth of the welded joint increased, the fatigue life was shortened, and the fracture location changed from the weld zone to the 5052 aluminum alloy base metal.

  • 6061铝合金和5052铝合金均具有密度低、比强度高、韧性好和抗冲击性好等优点,广泛用于航空航天、船舶和交通运输等领域。在实际应用过程中,由于结构件不同部位所需性能不同,往往需要使用不同种类和性能的铝合金来焊接构成,以最大限度发挥各自性能优点[1-2]。然而,异种金属由于熔点、导热系数、热膨胀系数和热裂纹敏感性等热物性参数的差异,在焊接过程中易产生气孔和裂纹等缺陷,造成异种金属焊接件力学性能和耐腐蚀性能的降低[3-5]

    钨极惰性气体保护焊(TIG)由于具有热裂倾向小、焊接成形质量高、易于实现自动化等优点,在铝合金焊接方面已有相关报道和成功应用,但研究主要集中在同种金属上。应用于交通运输、海洋工程等领域的异种铝合金焊接结构件在长期服役过程中难免会受到外界环境侵蚀并产生损伤,而腐蚀损伤会在交变载荷作用下萌生裂纹并扩展,一定程度上降低了异种金属焊件的服役寿命,因此有必要对异种铝合金焊接行为进行研究[6-10]。作者制备了6061/5052异种铝合金TIG焊接接头,研究了接头的显微组织、晶粒尺寸、硬度、抗应力腐蚀性能和预腐蚀疲劳性能,以期为高综合性能、长寿命异种铝合金焊件的工艺开发与优化提供参考。

    母材为尺寸均为300 mm×100 mm×5 mm的6061-T6铝合金和5052-O铝合金板。6061-T6铝合金由基体α-Al和Al(Fe,Mn,Si,Cr)相组成;5052-O铝合金由基体α-Al,Al(Fe,Mn)和富镁相组成。焊接材料为ER5356铝合金焊丝,直径为1.6 mm。母材和焊丝的化学成分见表1。焊前母材依次经去离子水、无水乙醇超声清洗并吹干。采用MAXSTAR 350型钨极惰性气体保护焊机对6061和5052铝合金进行异种焊接,焊接方式为对焊,不开坡口,保护气为高纯氩气,流量为10 L·min−1,焊接电流为100 A,焊接速度为115 mm·min−1

    表  1  试验材料的化学成分
    Table  1.  Chemical composition of test materials
    材料MgSiMnFeCrZnCuAl
    6061铝合金1.030.660.080.120.230.060.18
    5052铝合金2.340.170.070.110.210.050.08
    ER5356铝合金焊丝4.720.280.110.140.120.030.09
    下载: 导出CSV 
    | 显示表格

    在6061/5052异种铝合金TIG焊接接头上以焊缝为中心制备金相试样,经磨抛和Keller试剂腐蚀后,采用IT-500型扫描电子显微镜(SEM)的电子背散射衍射(EBSD)模式观察显微组织。采用HV-1000型数显维氏硬度计测试表面硬度,载荷为0.98 N,保载时间为15 s,垂直于焊接方向取点测试。根据GB/T 15970.7—2017,以焊缝为中心制备如图1(a)所示的应力腐蚀试样,夹持段较长以便平行浸泡,采用WDML-3型微机控制慢应变应力腐蚀试验机进行应力腐蚀试验[11],腐蚀介质分别为空气和质量分数3.5%的NaCl溶液,应变速率为1×10−6 s−1。根据GB/T 7998—2005,以焊缝为中心制备如图1(b)所示的疲劳试样,表面经砂纸打磨,清洗吹干后,分别在空气、质量分数3.5% NaCl溶液、质量分数3.5% NaCl+体积分数5×10−3 HCl溶液、质量分数3.5% NaCl+体积分数10×10−3 HCl溶液腐蚀介质中浸泡3 d,采用OM测试晶间腐蚀深度。根据GB/T 3075—2008,采用升降法在MTS-810型液压伺服万能材料试验机上进行室温高周预腐蚀疲劳试验[12],极限寿命设定为107周次,应力比为0.1,测试频率为30 Hz。

    图  1  应力腐蚀试样和疲劳试样的尺寸
    Figure  1.  Size of stress corrosion sample (a) and fatigue sample (b)

    图2可见:焊接接头6061铝合金侧母材和热影响区有沿轧制方向(横向)变形的纤维组织和细小亚晶粒,熔合线处有柱状晶,这主要与6061铝合金和ER5356铝合金焊丝成分差异较大,在焊接热输入下发生熔池凝固和元素扩散有关[13];焊缝区组织为均匀细小的等轴晶;5052铝合金侧母材和热影响区组织与焊缝区相似,过渡平稳,这主要与5052铝合金与ER5356铝合金焊丝间成分差异较小有关[14]。统计可得,6061铝合金母材,焊缝和5052铝合金母材的平均晶粒尺寸分别为38.42,47.13,41.17 µm。

    图  2  6061/5052异种铝合金TIG焊接接头的EBSD形貌
    Figure  2.  EBSD morphology of TIG welded joint of 6061/5052 dissimilar aluminum alloys

    图3可见:6061铝合金和5052铝合金母材的显微硬度分别为84.8,96.4 HV;两侧热影响区硬度均存在梯度分布特征,这源于母材与焊缝间元素扩散引起的固溶强化作用的不同[15];相比5052铝合金侧热影响区,6061铝合金侧热影响区更宽(28 mm)且出现硬度最小值(51 HV),属焊接接头薄弱区;焊缝区显微硬度在63~76 HV。相比之下,母材区显微硬度高于热影响区和焊缝区,这是因为母材区的晶粒尺寸更小。

    图  3  6061/5052异种铝合金TIG焊接接头的表面显微硬度分布
    Figure  3.  Surface microhardness distribution of TIG welded joint of 6061/5052 dissimilar aluminum alloys

    表2可知:在不同介质中应力腐蚀后,接头断裂位置均位于6061铝合金侧距焊缝中心约14 mm处,这是因为此处存在柱状晶等薄弱组织且硬度相对较低[16-17];相比在空气中,焊接接头在NaCl溶液中的抗拉强度、屈服强度和断后伸长率均略高,抗应力腐蚀性能略强。

    表  2  6061/5052异种铝合金TIG焊接接头的应力腐蚀试验结果
    Table  2.  Stress corrosion test results of TIG welded joint of 6061/5052 dissimilar aluminum alloys
    介质抗拉强度/MPa屈服强度/MPa断后伸长率/%断裂位置
    空气84.9165.415.26061铝合金侧热影响区
    NaCl86.8171.416.8
    下载: 导出CSV 
    | 显示表格

    表3可知:随着腐蚀介质中HCl含量增加,焊接接头不同区域的晶间腐蚀深度均增加,说明HCl的加入会促使接头发生晶间腐蚀;在相同腐蚀介质中,母材的晶间腐蚀深度大于相应一侧的热影响区,焊缝区的晶间腐蚀深度最小,且6061铝合金母材及影响区的晶间腐蚀深度小于5052铝合金。

    表  3  6061/5052异种铝合金TIG焊接接头的最大和平均晶间腐蚀深度
    Table  3.  Maximum and average intergranular corrosion depths of TIG welded joints of 6061/5052 dissimilar aluminum alloy
    介质晶间腐蚀深度最大值/μm晶间腐蚀深度平均值/μm
    6061铝合金母材6061铝合金侧热影响区焊缝5052铝合金侧热影响区5052铝合金母材6061铝合金母材6061铝合金侧热影响区焊缝5052铝合金侧热影响区5052铝合金母材
    3.5% NaCl溶液20.920.012.023.730.017.669.512.018.622.7
    3.5% NaCl+5×10-3 HCl123.069.523.3118.3151.2109.2109.023.399.0135.3
    3.5% NaCl+10×10-3 HCl137.5109.025.0162.0248.0120.569.525.0142.1220.8
    下载: 导出CSV 
    | 显示表格

    表4可见:相比空气介质,焊接接头在NaCl溶液或NaCl+HCl溶液中腐蚀后的疲劳寿命更长;随着NaCl溶液中腐蚀介质中HCl含量增加,接头的疲劳寿命缩短;在NaCl溶液中循环107周次时未发生断裂;随着NaCl溶液中HCl含量增加,接头的疲劳断裂位置由焊缝区向5052铝合金母材转移。这说明预腐蚀处理时的晶间腐蚀深度需达到一定门槛值,接头的疲劳断裂才以晶间腐蚀深度为主导因素,此时由于5052铝合金母材区晶间腐蚀深度最大,所以在此处发生断裂;反之,未达到门槛值时,还需考虑晶粒尺寸和力学性能等因素,由于焊缝区晶粒尺寸最大且硬度较小,所以在此处发生断裂[18-20]

    表  4  6061/5052异种铝合金TIG焊接接头的预腐蚀疲劳试验结果
    Table  4.  Precorrosion fatigue test results of TIG welded joint of 6061/5052 dissimilar aluminum alloy
    介质疲劳应力/MPa疲劳寿命/次断裂位置
    空气130145 024焊缝
    3.5% NaCl溶液98107未断裂
    3.5% NaCl+5×10-3 HCl983 558 803焊缝
    3.5% NaCl+10×10-3 HCl98445 9835052铝合金母材
    下载: 导出CSV 
    | 显示表格

    (1)接头中6061铝合金侧母材和热影响区有沿轧制方向变形的纤维组织和细小亚晶粒,熔合线处有柱状晶;焊缝区与5052铝合金侧母材和热影响区组织相似,为均匀细小的等轴晶。6061铝合金母材,焊缝和5052铝合金母材的平均晶粒尺寸分别为38.42,47.13,41.17 µm。

    (2)母材区显微硬度高于热影响区和焊缝区,硬度最小值(51 HV)出现在6061铝合金侧热影响区。

    (3)接头在NaCl溶液和空气中应力腐蚀后,断裂位置均在6061铝合金侧热影响区,相比在空气中,接头在NaCl溶液中的抗拉强度、屈服强度和断后伸长率均略高,抗应力腐蚀性能略强。随着NaCl溶液中HCl含量增加,焊接接头的晶间腐蚀深度增加,疲劳寿命缩短,断裂位置由焊缝区向5052铝合金母材转变。

  • 图  1   应力腐蚀试样和疲劳试样的尺寸

    Figure  1.   Size of stress corrosion sample (a) and fatigue sample (b)

    图  2   6061/5052异种铝合金TIG焊接接头的EBSD形貌

    Figure  2.   EBSD morphology of TIG welded joint of 6061/5052 dissimilar aluminum alloys

    图  3   6061/5052异种铝合金TIG焊接接头的表面显微硬度分布

    Figure  3.   Surface microhardness distribution of TIG welded joint of 6061/5052 dissimilar aluminum alloys

    表  1   试验材料的化学成分

    Table  1   Chemical composition of test materials

    材料MgSiMnFeCrZnCuAl
    6061铝合金1.030.660.080.120.230.060.18
    5052铝合金2.340.170.070.110.210.050.08
    ER5356铝合金焊丝4.720.280.110.140.120.030.09
    下载: 导出CSV

    表  2   6061/5052异种铝合金TIG焊接接头的应力腐蚀试验结果

    Table  2   Stress corrosion test results of TIG welded joint of 6061/5052 dissimilar aluminum alloys

    介质抗拉强度/MPa屈服强度/MPa断后伸长率/%断裂位置
    空气84.9165.415.26061铝合金侧热影响区
    NaCl86.8171.416.8
    下载: 导出CSV

    表  3   6061/5052异种铝合金TIG焊接接头的最大和平均晶间腐蚀深度

    Table  3   Maximum and average intergranular corrosion depths of TIG welded joints of 6061/5052 dissimilar aluminum alloy

    介质晶间腐蚀深度最大值/μm晶间腐蚀深度平均值/μm
    6061铝合金母材6061铝合金侧热影响区焊缝5052铝合金侧热影响区5052铝合金母材6061铝合金母材6061铝合金侧热影响区焊缝5052铝合金侧热影响区5052铝合金母材
    3.5% NaCl溶液20.920.012.023.730.017.669.512.018.622.7
    3.5% NaCl+5×10-3 HCl123.069.523.3118.3151.2109.2109.023.399.0135.3
    3.5% NaCl+10×10-3 HCl137.5109.025.0162.0248.0120.569.525.0142.1220.8
    下载: 导出CSV

    表  4   6061/5052异种铝合金TIG焊接接头的预腐蚀疲劳试验结果

    Table  4   Precorrosion fatigue test results of TIG welded joint of 6061/5052 dissimilar aluminum alloy

    介质疲劳应力/MPa疲劳寿命/次断裂位置
    空气130145 024焊缝
    3.5% NaCl溶液98107未断裂
    3.5% NaCl+5×10-3 HCl983 558 803焊缝
    3.5% NaCl+10×10-3 HCl98445 9835052铝合金母材
    下载: 导出CSV
  • [1] 房洪杰,刘慧,孙杰,等. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报,2023,37(21):207-216.

    FANG H J ,LIU H ,SUN J ,et al. Research status and development trend of 5xxx series aluminum alloys[J]. Materials Reports,2023,37(21):207-216.

    [2] 杨健,骆顺存,裴鹏飞,等. 异种铝合金焊接研究现状及展望[J]. 电焊机,2023,53(5):1-11.

    YANG J ,LUO S C ,PEI P F ,et al. Research status and prospect of dissimilar aluminum alloy welding[J]. Electric Welding Machine,2023,53(5):1-11.

    [3] 宋洪杰. 高强度铝合金及其先进焊接技术研究现状及发展方向[J]. 世界有色金属,2018(13):200-201.

    SONG H J. Research status and development direction of high strength aluminum alloy and its advanced welding technology[J]. World Nonferrous Metals,2018(13):200-201.

    [4] 杨则云. 高强度铝合金及其先进焊接技术研究现状及发展方向[J]. 电焊机,2018,48(3):255-259.

    YANG Z Y. Research status and development direction of high strength aluminum alloy and its advanced welding technologies[J]. Electric Welding Machine,2018,48(3):255-259.

    [5] 路全彬,龙伟民,钟素娟,等. 铝合金焊接材料制备研究现状与发展[J]. 焊接,2016(2):6-9.

    LU Q B ,LONG W M ,ZHONG S J ,et al. Status and development of preparation for aluminum alloy welding materials[J]. Welding and Joining,2016(2):6-9.

    [6] 陈志元,张晓鸿,林鹏,等. 2219铝合金厚板TIG焊接头组织与力学性能研究[J]. 宇航材料工艺,2023,53(1):64-68.

    CHEN Z Y ,ZHANG X H ,LIN P ,et al. Research on joint microstructure and mechanical properties of TIG welding of 2219 aluminum alloy thick plate[J]. Aerospace Materials and Technology,2023,53(1):64-68.

    [7] 王非凡,谢聿铭,吴会强,等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报,2022,43(6):43-49.

    WANG F F ,XIE Y M ,WU H Q ,et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution,2022,43(6):43-49.

    [8] BUGARIN A F S ,DE ABREU C P ,TERADA M ,et al. Effect of friction stir welding (FSW)on the electrochemical behavior and galvanic coupling of AA2024-T3 and AA7475-T651[J]. Materials Today Communications,2020,25:101591.
    [9] DONATUS U ,THOMPSON G E ,LIU Z. Study of the effect of cadmium on the bimetallic corrosion behavior of AA2024T3 and mild steel couple[J]. Journal of Materials Engineering and Performance,2015,24(5):1897-1905.
    [10] KHAN M A ,NGO H H ,GUO W S ,et al. Optimization of process parameters for production of volatile fatty acid,biohydrogen and methane from anaerobic digestion[J]. Bioresource Technology,2016,219:738-748.
    [11] 范霁康,马立,倪程,等. 5A01铝合金薄板激光摆动焊接接头微观组织与力学性能[J]. 电焊机,2023,53(1):38-43.

    FAN J K ,MA L ,NI C ,et al. Microstructure and mechanical properties of 5A01 aluminum alloy sheet joint welded by laser oscillation welding[J]. Electric Welding Machine,2023,53(1):38-43.

    [12] 严建强,陈永炜,王志勇,等. 7075铝合金中厚板激光扫描焊接气孔抑制机理研究[J]. 应用激光,2023,43(1):1-11.

    YAN J Q ,CHEN Y W ,WANG Z Y ,et al. Study on the porosity control mechanism of medium thick 7075 aluminum alloy plate by scanning laser welding[J]. Applied Laser,2023,43(1):1-11.

    [13] 牛虎山,林化强,崔洪芝. 6005A铝合金摆动激光焊接组织及力学性能研究[J]. 精密成形工程,2023,15(4):33-39.

    NIU H S ,LIN H Q ,CUI H Z. Microstructure and mechanical properties of 6005A aluminum alloy by oscillating laser welding[J]. Journal of Netshape Forming Engineering,2023,15(4):33-39.

    [14] 张唯,伍江瑶,牌君君,等. 激光焊速率对6061铝合金接头组织与性能的影响[J]. 铸造工程,2023,47(2):18-22.

    ZHANG W ,WU J Y ,PAI J J ,et al. Effect of laser welding rate on microstructure and properties of 6061 aluminum alloy joint[J]. Foundry Engineering,2023,47(2):18-22.

    [15] SASIKUMAR A ,GOPI S ,MOHAN D G. Prediction of filler added friction stir welding parameters for improving corrosion resistance of dissimilar aluminium alloys 5052 and 6082 joints[J]. Advances in Materials Science,2022,22(3):79-95.
    [16] LU Y ,LAI J ,PANG J P ,et al. Microstructure and fracture behaviors of oscillating laser welded 5A06 aluminum alloy lock butt joint[J]. Applied Sciences,2023,13(6):3381.
    [17] 蔡达,王立世,胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报,2023,37(4):147-153.

    CAI D ,WANG L S ,HU X B. Study on corrosion behavior of friction stir welded joints of AA5052 aluminum/AZ31B magnesium alloys[J]. Materials Reports,2023,37(4):147-153.

    [18] 徐双喜,佟哲,曹俊伟,等. 船用铝合金5059的典型焊接节点疲劳试验和寿命预报方法研究[J]. 船舶力学,2022,26(12):1823-1839.

    XU S X ,TONG Z ,CAO J W ,et al. Fatigue test and life prediction method of typical welded joints for marine aluminum alloy 5059[J]. Journal of Ship Mechanics,2022,26(12):1823-1839.

    [19] SOARES R C ,DA ROSA E ,SOUSA A I F. Assessment of fatigue damage in welded aluminum joints subjected to multiaxial stress state[J]. Heliyon,2023,9(4):15196.
    [20] 张亮,孙华峰. 铝合金对接接头设计及疲劳寿命分析[J]. 焊接技术,2023,52(4):11-16.

    ZHANG L ,SUN H F. Butt joint design and fatigue life analysis for aluminum alloy[J]. Welding Technology,2023,52(4):11-16.

图(3)  /  表(4)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2024-07-22
  • 刊出日期:  2024-08-19

目录

/

返回文章
返回