• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

工艺参数对热丝脉冲TIG堆焊Inconel 625合金成形性能及组织的影响

蔡军, 陈成

蔡军, 陈成. 工艺参数对热丝脉冲TIG堆焊Inconel 625合金成形性能及组织的影响[J]. 机械工程材料, 2024, 48(11): 61-68. DOI: 10.11973/jxgccl240346
引用本文: 蔡军, 陈成. 工艺参数对热丝脉冲TIG堆焊Inconel 625合金成形性能及组织的影响[J]. 机械工程材料, 2024, 48(11): 61-68. DOI: 10.11973/jxgccl240346
CAI Jun, CHEN Cheng. Effects of Process Parameters on Formability and Microstructure of Inconel 625 Alloy by Hot Wire Pulsed TIG Welding[J]. Materials and Mechanical Engineering, 2024, 48(11): 61-68. DOI: 10.11973/jxgccl240346
Citation: CAI Jun, CHEN Cheng. Effects of Process Parameters on Formability and Microstructure of Inconel 625 Alloy by Hot Wire Pulsed TIG Welding[J]. Materials and Mechanical Engineering, 2024, 48(11): 61-68. DOI: 10.11973/jxgccl240346

工艺参数对热丝脉冲TIG堆焊Inconel 625合金成形性能及组织的影响

基金项目: 

南通开放大学重大课题 2024ZDA01

详细信息
    作者简介:

    蔡军(1987—),男,江苏南通人,讲师,硕士

  • 中图分类号: TG455

Effects of Process Parameters on Formability and Microstructure of Inconel 625 Alloy by Hot Wire Pulsed TIG Welding

  • 摘要:

    采用热丝脉冲非熔化极惰性气体保护焊(TIG)在低电流(峰值/基值电流为160 A/95 A)和不同焊接速度(220~300 mm·min−1)下于AISI 4130钢表面制备Inconel 625合金堆焊层,研究了焊接电流与焊接速度对堆焊层成形性能及显微组织的影响,并与高电流(峰值/基值电流为190 A/110 A)条件下进行对比。结果表明:随着焊接速度的增加,低电流下堆焊层的宽度和熔深降低,高度以及熔深与高度之比先降后升;低电流下堆焊层的宽度、熔深及熔深与高度之比低于高电流下,高度则高于高电流下。低电流、低焊接速度可获得窄且高,稀释率低的堆焊层。低电流下堆焊层截面近表面和远离熔池底部主要形成胞状晶、胞状树枝晶,熔池底部以平面晶为主;随着焊接速度的降低,平面晶区扩大,近表面晶粒向柱状晶或胞状树枝晶发展,远离熔池底部的晶粒向胞状晶发展。在峰值/基值电流160 A/95 A、焊接速度240 mm·min−1和搭接率30%条件下制备的3层10道堆焊层连续致密,显微硬度在(280±20)HV,堆焊后还需进行退火处理以降低硬度。

    Abstract:

    Inconel 625 alloy cladding layer was prepared on AISI 4130 steel surface by hot-wire tungsten inert gas (TIG) welding under a low current (peak/base currents of 160 A/95 A) and different welding speeds (220–300 mm · min−1). The effects of welding current and welding speed on the formability and microstructure of the cladding layer were investigated, and compared with those at a high current (peak/base currents of 190 A/110 A). The results show that at the low current, with the increase of welding speed, the width, depth of fusion of the cladding layer decreased, and the height and the ratio of depth of fusion to height of the cladding layer first decreased and then increased. The width, depth of fusion and the ratio of depth of fusion to height of the cladding layer at the low current were lower than those at the high current, and the height was higher than that at a high current. Low current and low welding speed could obtain the narrow and high cladding layer with low dilution rate. At the low current, cellular crystals and dendritic crystals were mainly formed near the surface and away from the bottom of the molten pool on the cross-section of the cladding layer, and planar crystals were dominant at the bottom of the molten pool. With the decrease of welding speed, the planar crystal region expanded, the grains near the surface developed into columnar or dendritic crystals, and the grains away from the bottom of the molten pool developed into cellular crystals. Under 160 A/95 A peak/base current, 240 mm · min−1 welding speed and 30% bonding rate, the three-layer ten-pass cladding layer was continuously dense and the microhardness was (280±20) HV. After cladding welding, annealing treatment was required to reduce the hardness.

  • 图  1   不同焊接速度、不同峰值/基值电流下堆焊层表面的宏观形貌

    Figure  1.   Surface macromorphology of cladding layer under different welding speeds and different peak/base currents

    图  2   不同焊接速度、不同峰值/基值电流条件下堆焊层截面的OM形貌

    Figure  2.   OM morphology of cladding layer cross-section under different welding speeds and different peak/base currents

    图  3   不同焊接电流下堆焊层宽度、高度、熔深以及熔深与高度之比随焊接速度的变化曲线

    Figure  3.   Width (a), height (b), depth of fusion (c) and ratio of depth of fusion to height (d) vs welding speed curves of cladding layer

    图  4   不同焊接电流、不同焊接速度下堆焊层截面近表面和近界面处的显微组织

    Figure  4.   Microstructure near surface (a, c) and near interface (b, d) of cladding layer cross-section underdifferent welding currents and different welding speeds

    图  5   3层10道堆焊层试样截面的OM形貌

    Figure  5.   OM morphology of cross-section of three-layer ten-pass cladding layer specimen

    图  6   3层10道堆焊层搭接界面和堆焊层/基材界面的SEM形貌

    Figure  6.   SEM morphology of overlap interface (a) and cladding layer/base metal interface (b) of three-layer ten-pass cladding layer

    图  7   3层10道堆焊试样截面显微硬度分布

    Figure  7.   Microhardness distribution on cross-section of three-layer ten-pass cladding sample

    图  8   3层10道堆焊试样热影响区的显微组织

    Figure  8.   Microstructure of heat affected zone of three-layer ten-pass cladding sample

    表  1   堆焊试验工艺参数

    Table  1   Process parameters of cladding welding test

    峰值电流/A基值电流/A焊接电压/V焊接速度/(mm·min−1焊接热输入/(J·mm−1
    11.5300345
    11.5280370
    19011011.8260408
    11.5240431
    11.7220479
    11.0300281
    11.8280322
    1609511.0260324
    11.5240367
    11.5220400
    下载: 导出CSV
    位置质量分数/%
    FeNiCrMoNbO
    186.555.613.410.473.96
    272.3216.555.701.264.16
    346.9521.9822.261.976.84
    441.7222.5328.581.176.00
    54.8155.4219.897.2312.65
    68.0956.4420.527.743.733.49
    下载: 导出CSV
  • [1] SANDHU S S ,SHAHI A S. Metallurgical,wear and fatigue performance of Inconel 625 weld claddings[J]. Journal of Materials Processing Technology,2016,233:1-8.
    [2] CARROLL B E ,OTIS R A ,BORGONIA J P ,et al. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition:Characterization and thermodynamic modeling[J]. Acta Materialia,2016,108:46-54.
    [3] ZHANG M ,ZHU Z Y ,ZHANG L S ,et al. Understanding microstructure evolution and corrosion behavior of wire arc cladding Inconel 625 superalloy by thermodynamic approaches[J]. Journal of Alloys and Compounds,2023,947:169530.
    [4] HE K ,DONG L J ,WANG Q Y ,et al. Comparison on the microstructure and corrosion behavior of Inconel 625 cladding deposited by tungsten inert gas and cold metal transfer process[J]. Surface and Coatings Technology,2022,435:128245.
    [5] HUANG J K ,LIU S E ,YU S R ,et al. Cladding Inconel 625 on cast iron via bypass coupling micro-plasma arc welding[J]. Journal of Manufacturing Processes,2020,56:106-115.
    [6] NAGHIYAN FESHARAKI M ,SHOJA-RAZAVI R ,MANSOURI H A ,et al. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques[J]. Optics & Laser Technology,2019,111:744-753.
    [7] WANG X Y ,LIU Z D ,LI J Y ,et al. Effect of heat treatment on microstructure,corrosion resistance,and interfacial characteristics of Inconel 625 laser cladding layer[J]. Optik,2022,270:169930.
    [8] 李继红,郭钊,李保铃,等. Inconel 625合金激光熔覆过程中显微组织演变的数值模拟[J]. 机械工程材料,2023,47(7):97-103.

    LI J H ,GUO Z ,LI B L ,et al. Numerical simulation of microstructure evolution of Inconel 625 alloy during laser cladding[J]. Materials for Mechanical Engineering,2023,47(7):97-103.

    [9] PRAVIN KUMAR N ,SIVA SHANMUGAM N. Some studies on nickel based Inconel 625 hard overlays on AISI 316L plate by gas metal arc welding based hardfacing process[J]. Wear,2020,456:203394.
    [10] 郭龙龙脉冲TIG堆焊Inconel 625工艺及堆焊层组织性能研究成都西南石油大学2017郭龙龙. 脉冲TIG堆焊Inconel 625工艺及堆焊层组织性能研究[D]. 成都:西南石油大学,2017.

    GUO L LStudy on process,microstructure and performance of Inconel 625 cladding layer deposited using pulsed TIGChengduSouthwest Petroleum University2017GUO L L. Study on process,microstructure and performance of Inconel 625 cladding layer deposited using pulsed TIG[D]. Chengdu:Southwest Petroleum University,2017.

    [11] 王匀,陈英箭,许桢英,等. 小孔内壁热丝TIG堆焊Inconel 625参数优化研究[J]. 热加工工艺,2017,46(19):1-4.

    WANG Y ,CHEN Y J ,XU Z Y ,et al. Study on parameters optimization of hot-wire TIG cladding Inconel 625 on small hole surface[J]. Hot Working Technology,2017,46(19):1-4.

    [12] 何江里,王厚昕,周海,等. 焊接热输入对新型低Mn微Nb钢CGHAZ组织及冲击韧性的影响[J]. 上海金属,2022,44(5):6-12.

    HE J L ,WANG H X ,ZHOU H ,et al. Effect of welding heat input on microstructure and inpact toughness of CGHAZ in a novel low-manganese niobium-microalloyed steel[J]. Shanghai Metals,2022,44(5):6-12.

    [13] RAFIEI J ,GHASEMI A R. Development of thermo-mechanical simulation of WC/Inconel 625 metal matrix composites laser cladding and optimization of process parameters[J]. International Journal of Thermal Sciences,2024,198:108883.
    [14] CASANUEVA R ,BRAÑAS C ,DIAZ F J ,et al. Characterization of an energy efficient pulsed current TIG welding process on AISI 316 and 304 stainless steels[J]. Heliyon,2023,9(9):e19819.
    [15] AMIRI V ,NAFFAKH-MOOSAVY H. Microstructural study of additively-manufactured carbon steel-stainless steel 316L-Inconel 625 functionally graded material:Simulation and experimental approaches[J]. Journal of Materials Research and Technology,2024,31:1164-1170.
  • 期刊类型引用(1)

    1. 高德坤. 水冷壁管排表面堆焊工艺的影响因素及优化措施. 造纸装备及材料. 2025(02): 34-36 . 百度学术

    其他类型引用(0)

图(8)  /  表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-09-29
  • 刊出日期:  2024-11-19

目录

    CHEN Cheng

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回