Effects of Process Parameters on Formability and Microstructure of Inconel 625 Alloy by Hot Wire Pulsed TIG Welding
-
摘要:
采用热丝脉冲非熔化极惰性气体保护焊(TIG)在低电流(峰值/基值电流为160 A/95 A)和不同焊接速度(220~300 mm·min−1)下于AISI 4130钢表面制备Inconel 625合金堆焊层,研究了焊接电流与焊接速度对堆焊层成形性能及显微组织的影响,并与高电流(峰值/基值电流为190 A/110 A)条件下进行对比。结果表明:随着焊接速度的增加,低电流下堆焊层的宽度和熔深降低,高度以及熔深与高度之比先降后升;低电流下堆焊层的宽度、熔深及熔深与高度之比低于高电流下,高度则高于高电流下。低电流、低焊接速度可获得窄且高,稀释率低的堆焊层。低电流下堆焊层截面近表面和远离熔池底部主要形成胞状晶、胞状树枝晶,熔池底部以平面晶为主;随着焊接速度的降低,平面晶区扩大,近表面晶粒向柱状晶或胞状树枝晶发展,远离熔池底部的晶粒向胞状晶发展。在峰值/基值电流160 A/95 A、焊接速度240 mm·min−1和搭接率30%条件下制备的3层10道堆焊层连续致密,显微硬度在(280±20)HV,堆焊后还需进行退火处理以降低硬度。
-
关键词:
- Inconel 625合金 /
- TIG堆焊 /
- 显微组织 /
- 显微硬度 /
- 工艺优化
Abstract:Inconel 625 alloy cladding layer was prepared on AISI 4130 steel surface by hot-wire tungsten inert gas (TIG) welding under a low current (peak/base currents of 160 A/95 A) and different welding speeds (220–300 mm · min−1). The effects of welding current and welding speed on the formability and microstructure of the cladding layer were investigated, and compared with those at a high current (peak/base currents of 190 A/110 A). The results show that at the low current, with the increase of welding speed, the width, depth of fusion of the cladding layer decreased, and the height and the ratio of depth of fusion to height of the cladding layer first decreased and then increased. The width, depth of fusion and the ratio of depth of fusion to height of the cladding layer at the low current were lower than those at the high current, and the height was higher than that at a high current. Low current and low welding speed could obtain the narrow and high cladding layer with low dilution rate. At the low current, cellular crystals and dendritic crystals were mainly formed near the surface and away from the bottom of the molten pool on the cross-section of the cladding layer, and planar crystals were dominant at the bottom of the molten pool. With the decrease of welding speed, the planar crystal region expanded, the grains near the surface developed into columnar or dendritic crystals, and the grains away from the bottom of the molten pool developed into cellular crystals. Under 160 A/95 A peak/base current, 240 mm · min−1 welding speed and 30% bonding rate, the three-layer ten-pass cladding layer was continuously dense and the microhardness was (280±20) HV. After cladding welding, annealing treatment was required to reduce the hardness.
-
Keywords:
- Inconel 625 alloy /
- TIG cladding /
- microstructure /
- microhardness /
- process optimization
-
表 1 堆焊试验工艺参数
Table 1 Process parameters of cladding welding test
峰值电流/A 基值电流/A 焊接电压/V 焊接速度/(mm·min−1) 焊接热输入/(J·mm−1) 11.5 300 345 11.5 280 370 190 110 11.8 260 408 11.5 240 431 11.7 220 479 11.0 300 281 11.8 280 322 160 95 11.0 260 324 11.5 240 367 11.5 220 400 位置 质量分数/% Fe Ni Cr Mo Nb O 1 86.55 5.61 3.41 0.47 3.96 2 72.32 16.55 5.70 1.26 4.16 3 46.95 21.98 22.26 1.97 6.84 4 41.72 22.53 28.58 1.17 6.00 5 4.81 55.42 19.89 7.23 12.65 6 8.09 56.44 20.52 7.74 3.73 3.49 -
[1] SANDHU S S ,SHAHI A S. Metallurgical,wear and fatigue performance of Inconel 625 weld claddings[J]. Journal of Materials Processing Technology,2016,233:1-8. [2] CARROLL B E ,OTIS R A ,BORGONIA J P ,et al. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition:Characterization and thermodynamic modeling[J]. Acta Materialia,2016,108:46-54. [3] ZHANG M ,ZHU Z Y ,ZHANG L S ,et al. Understanding microstructure evolution and corrosion behavior of wire arc cladding Inconel 625 superalloy by thermodynamic approaches[J]. Journal of Alloys and Compounds,2023,947:169530. [4] HE K ,DONG L J ,WANG Q Y ,et al. Comparison on the microstructure and corrosion behavior of Inconel 625 cladding deposited by tungsten inert gas and cold metal transfer process[J]. Surface and Coatings Technology,2022,435:128245. [5] HUANG J K ,LIU S E ,YU S R ,et al. Cladding Inconel 625 on cast iron via bypass coupling micro-plasma arc welding[J]. Journal of Manufacturing Processes,2020,56:106-115. [6] NAGHIYAN FESHARAKI M ,SHOJA-RAZAVI R ,MANSOURI H A ,et al. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques[J]. Optics & Laser Technology,2019,111:744-753. [7] WANG X Y ,LIU Z D ,LI J Y ,et al. Effect of heat treatment on microstructure,corrosion resistance,and interfacial characteristics of Inconel 625 laser cladding layer[J]. Optik,2022,270:169930. [8] 李继红,郭钊,李保铃,等. Inconel 625合金激光熔覆过程中显微组织演变的数值模拟[J]. 机械工程材料,2023,47(7):97-103. LI J H ,GUO Z ,LI B L ,et al. Numerical simulation of microstructure evolution of Inconel 625 alloy during laser cladding[J]. Materials for Mechanical Engineering,2023,47(7):97-103.
[9] PRAVIN KUMAR N ,SIVA SHANMUGAM N. Some studies on nickel based Inconel 625 hard overlays on AISI 316L plate by gas metal arc welding based hardfacing process[J]. Wear,2020,456:203394. [10] 郭龙龙脉冲TIG堆焊Inconel 625工艺及堆焊层组织性能研究成都西南石油大学2017郭龙龙. 脉冲TIG堆焊Inconel 625工艺及堆焊层组织性能研究[D]. 成都:西南石油大学,2017. GUO L LStudy on process,microstructure and performance of Inconel 625 cladding layer deposited using pulsed TIGChengduSouthwest Petroleum University2017GUO L L. Study on process,microstructure and performance of Inconel 625 cladding layer deposited using pulsed TIG[D]. Chengdu:Southwest Petroleum University,2017.
[11] 王匀,陈英箭,许桢英,等. 小孔内壁热丝TIG堆焊Inconel 625参数优化研究[J]. 热加工工艺,2017,46(19):1-4. WANG Y ,CHEN Y J ,XU Z Y ,et al. Study on parameters optimization of hot-wire TIG cladding Inconel 625 on small hole surface[J]. Hot Working Technology,2017,46(19):1-4.
[12] 何江里,王厚昕,周海,等. 焊接热输入对新型低Mn微Nb钢CGHAZ组织及冲击韧性的影响[J]. 上海金属,2022,44(5):6-12. HE J L ,WANG H X ,ZHOU H ,et al. Effect of welding heat input on microstructure and inpact toughness of CGHAZ in a novel low-manganese niobium-microalloyed steel[J]. Shanghai Metals,2022,44(5):6-12.
[13] RAFIEI J ,GHASEMI A R. Development of thermo-mechanical simulation of WC/Inconel 625 metal matrix composites laser cladding and optimization of process parameters[J]. International Journal of Thermal Sciences,2024,198:108883. [14] CASANUEVA R ,BRAÑAS C ,DIAZ F J ,et al. Characterization of an energy efficient pulsed current TIG welding process on AISI 316 and 304 stainless steels[J]. Heliyon,2023,9(9):e19819. [15] AMIRI V ,NAFFAKH-MOOSAVY H. Microstructural study of additively-manufactured carbon steel-stainless steel 316L-Inconel 625 functionally graded material:Simulation and experimental approaches[J]. Journal of Materials Research and Technology,2024,31:1164-1170. -
期刊类型引用(1)
1. 高德坤. 水冷壁管排表面堆焊工艺的影响因素及优化措施. 造纸装备及材料. 2025(02): 34-36 .
百度学术
其他类型引用(0)

下载:
