• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于无人机智能视觉的大型特种设备表面缺陷检测

马金鑫, 杜伟鑫, 袁昊, 赵逸飞, 杨学才

马金鑫, 杜伟鑫, 袁昊, 赵逸飞, 杨学才. 基于无人机智能视觉的大型特种设备表面缺陷检测[J]. 无损检测, 2023, 45(12): 68-73. DOI: 10.11973/wsjc202312013
引用本文: 马金鑫, 杜伟鑫, 袁昊, 赵逸飞, 杨学才. 基于无人机智能视觉的大型特种设备表面缺陷检测[J]. 无损检测, 2023, 45(12): 68-73. DOI: 10.11973/wsjc202312013
MA Jinxin, DU Weixin, YUAN Hao, ZHAO Yifei, YANG Xuecai. Large-scale special equipment table defects detection based on UAV intelligent vision[J]. Nondestructive Testing, 2023, 45(12): 68-73. DOI: 10.11973/wsjc202312013
Citation: MA Jinxin, DU Weixin, YUAN Hao, ZHAO Yifei, YANG Xuecai. Large-scale special equipment table defects detection based on UAV intelligent vision[J]. Nondestructive Testing, 2023, 45(12): 68-73. DOI: 10.11973/wsjc202312013

基于无人机智能视觉的大型特种设备表面缺陷检测

基金项目: 

江苏省大学生创新创业训练计划(202210290297H)

详细信息
    作者简介:

    马金鑫(2005-),男,主要研究方向为特种设备无损检测技术

    通讯作者:

    马金鑫, E-mail:majinxincumt@163.com

  • 中图分类号: TG115.28

Large-scale special equipment table defects detection based on UAV intelligent vision

  • 摘要: 为解决大型特种设备不可达部位表面缺陷检测的难题,提出了一种利用无人机检测和识别表面裂纹的方法。首先利用搭载着双云台的无人机检测装置,对罐区围堰墙面以及高空建筑物墙面等目标的表面图像进行全方位采集;然后用Faster R-CNN深度学习神经网络算法对采集到的图像进行分类,确定检测图像中是否存在裂纹缺陷;最后对检测出的裂纹目标框区域进行形态学处理。检测结果表明,Faster R-CNN算法的裂纹检测准确率达95.74%,同时裂纹宽度识别误差约为3.9%,长度误差约为5.3%,实现了罐区围堰墙面以及高空建筑物墙面的远程自动化检测。
    Abstract: To solve the problem of surface defect detection in inaccessible parts of large-scale special equipment, a method using unmanned aerial vehicle (UAV) to detect and identify surface cracks was proposed. Firstly, a UAV detection device equipped with a dual pan-tilt-zoom (PTZ) platform was used to comprehensively collect surface images of the tank farm cofferdam walls and high-altitude building walls; Then, the Faster R-CNN deep learning neural network algorithm was used to classify the collected images and detect whether there were cracks or defects in the images; Finally, morphological processing on the detected crack target box area was performed. The detection results showed that the Faster R-CNN algorithm had a crack detection accuracy of 95.74%, with a crack width recognition error of about 3.9% and a length error of about 5.3%. It had achieved remote automated detection of the tank farm cofferdam wall and high-altitude building wall.
  • [1] 周前飞, 丁树庆, 冯月贵, 等.基于无人机视觉的起重机表面裂纹检测方法[J].测控技术, 2022, 41(4):28-34, 75.
    [2] 张川, 邹和东, 王伟, 等.无人机在架空输电线路运检中的应用[J].光源与照明, 2021(10):110-112.
    [3] 张铭予. 基于深度学习的输电线巡检图像绝缘子检测和缺陷识别[D].西安:西安理工大学, 2021.
    [4] 雷家杰, 张太雷, 刘小双, 等.基于多旋翼无人机的紫外成像检测技术在电力巡检中的应用[J].电气时代, 2021(9):47-51.
    [5] 吴云鹏. 高铁沿线典型设备的无人机图像智能缺陷检测研究[D].北京:北京交通大学, 2021.
    [6] 戴永东, 姚建光, 李勇, 等.基于定点化自适应选择卷积神经网络的电力缺陷识别方法[J].高电压技术, 2021, 47(11):3827-3836.
    [7] 张喆. 基于深度学习的航拍架空输电线路典型缺陷识别定位研究[D].北京:华北电力大学, 2021.
    [8]

    STOKKELAND M, KLAUSEN K, JOHANSEN T A.Autonomous visual navigation of Unmanned Aerial Vehicle for wind turbine inspection[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS).Denver, CO, USA:IEEE, 2015.

    [9] 贺斌, 贾建华, 赵峰, 等.无人机在风机叶片检测中的应用[J].电工技术, 2019(13):64-65.
    [10] 毛希玮, 徐莹莹.基于无人机的风机叶片缺陷自动检测技术[J].复合材料科学与工程, 2020(9):85-89.
    [11] 彭麟. 基于无人机获取图像的风机叶片表面故障的检测与分析[D].上海:上海电机学院, 2019.
    [12] 温晗, 王剑.基于激光点云的风机叶片无人机自主巡检策略研究[J].现代制造技术与装备, 2021, 57(9):38-39.
    [13]

    DORAFSHAN S, THOMAS R J, COOPMANS C, et al.Deep learning neural networks for sUAS-assisted structural inspections:feasibility and application[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS).Dallas, TX, USA:IEEE, 2018.

    [14]

    VAZQUEZ-NICOLAS J M, ZAMORA E, GONZALEZ-HERNANDEZ I, et al.Towards automatic inspection:crack recognition based on Quadrotor UAV-taken images[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS).Dallas, TX, USA:IEEE, 2018.

    [15] 陈荣敏, 王皓冉, 汪双, 等.基于无人机的坝面裂纹缺陷智能检测方法[J].水利水电科技进展, 2021, 41(6):7-12.
计量
  • 文章访问数:  55
  • HTML全文浏览量:  3
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-09
  • 刊出日期:  2023-12-09

目录

    /

    返回文章
    返回