[1] |
YAN F K,YAN G Z,TAO N R,et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J]. Acta Materialia,2012,60:1059-1071.
|
[2] |
LUO K Y,LUA J Z,ZHANG Y K,et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Materials Science and Engineering A,2011,528:4783-4788.
|
[3] |
LO K H,SHEK C H,LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R,2009,65:39-104.
|
[4] |
CHEN X H,LU J,LU L,et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia,2005,52:1039-1044.
|
[5] |
MINORU F,HORITA Z J,Horita M,et al. The use of severe plastic deformation for microstructural control[J]. Materials Science and Engineering A,2002,324:82-89.
|
[6] |
AZUSHIMA A,KOPP R,KORHONEN A,et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Annals-Manufacturing Technology,2008,57:716-735.
|
[7] |
SERGUEEVA A V,STOLYAROV V V,VALIEV R Z,et al. Advanced mechanical properties of pure titanium with ultrafine grained structure[J]. Scripta Materialia,2001,45:747-752.
|
[8] |
UENO H,KAKIHATA K,KANEKO Y,et al. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel[J]. Acta Materialia,2011,59:7060-7069.
|
[9] |
QU S,HUANG C X,GAO Y L,et al. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing[J]. Materials Science and Engineering A,2008, 475:207-216.
|
[10] |
ZHANG L Y,MA A B,JIANG J H,et al. Sulphuricacid corrosion of ultrafine-grained mild steel processed by equal-channel angular pressing[J]. Corrosion Science,2013,75:434-442.
|
[11] |
曹胜男,郭志超,王光灿. 低维纳米材料的制备方法与金属纳米材料[J]. 上海有色金属,2007,28(2):90-94.
|
[12] |
叶威,李瑛,王福会. 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报,2008,28(3):129-134.
|
[13] |
LU K,LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering A,2004,375-377:38-45.
|
[14] |
MORDYUK B N,PROKOPENKO G I,VASYLYEV M A,et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J]. Materials Science and Engineering A,2007,458:253-261.
|
[15] |
TAO N R,WANG Z B,TONG W P,et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia,2002,50:4603-4616.
|
[16] |
ZHANG H W,HEI Z K,LIU G,et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia,2003,51:1871-1881.
|
[17] |
LIU G,LU J,LU K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering A,2000,286:91-95.
|
[18] |
ROLAND T,RETRAINT D,LU K,et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering A,2007,445-446:281-288.
|
[19] |
YAN F K,LIU G Z,TAO N R,et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J]. Acta Materialia,2012,60:1059-1071.
|
[20] |
CHEN X H,LU J,LU L,et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia,2005,52:1039-1044.
|
[21] |
LU J Z,LUO K Y,ZHANG Y K,et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia,2010,58:5354-5362.
|
[22] |
CHEN A Y,RUAN H H,WANG J,et al. The influence of strain rate on the microstructure transition of 304 stainless steel[J]. Acta Materialia,2011,59:3697-3709.
|
[23] |
QU S,HUANG C X,GAO Y L,et al. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing[J]. Materials Science and Engineering A,2008,475:207-216.
|
[24] |
RAVI K B,SHARMA S,MAHATO B. Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties[J]. Materials Science and Engineering A,2011,528:2209-2216.
|
[25] |
ZHANG Z J,GAO Y,GUI Y,et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing[J]. Corrosion Science,2012,54:60-67.
|
[26] |
YE W,LI Y,WANG F H. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization[J]. Electrochimica Acta,2009,54:1339-1349.
|
[27] |
DI SCHINO A,KENNY J M. Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels[J]. Journal of Materials Science Letters,2002,21:1631-1634.
|
[28] |
RALSTON K D,BIRBILIS N,DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia,2010,63:1201-1204.
|
[29] |
RALSTON K D,FABIJANIC D,BIRBILIS N. Effect of grain size on corrosion of high purity aluminium[J]. Electrochimica Acta,2011,56:1729-1736.
|
[30] |
YE W,LI Y,WANG F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel[J]. Electrochimica Acta,2006,51:4426-4432.
|
[31] |
包乌日图巴雅拉,朱军,邱嘉杰. 非晶及纳米晶软磁材料耐腐蚀性能的研究现状[J]. 上海有色金属,2008,29(1):32-36.
|
[32] |
KRUPP U. Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing[J]. Journal of Materials Science,2008,43:3908-3916.
|
[33] |
HU C L,XIA S,LI H,et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science,2011,53:1880-1886.
|
[34] |
SUN F L,MENG G Z,ZHANG T,et al. Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl-[J]. Electrochimica Acta,2009,54:1578-1583.
|
[35] |
LEE H S,KIM D S,JUNG J S,et al. Influence of peening on the corrosion properties of AISI 304 stainless steel[J]. Corrosion Science,2009,51:2826-2830.
|
[36] |
LIN Y J,WEN H M,LI Y,et al. An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries[J]. Acta Materialia,2014,82:304-315.
|
[37] |
吕爱强,张洋,李瑛,等. 异步轧制对表面纳米化316L不锈钢组织和性能的影响[J]. 金属学报,2005,41(3):271-276.
|
[38] |
HU C L,XIA S,LI H,et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science,2011,53:1880-1886.
|
[39] |
RAABE D,HERBIG S S,LI Y D,et al. Grain boundary segregation engineering in metallic alloys:A pathway to the design of interfaces[J]. Current Opinion in Solid and Materials Science,2014,18(4):253-261.
|
[40] |
SHIMADA M,KOKAWA H,WANG Z J,et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Materialia,2002,50:2331-2341.
|
[41] |
MICHIUCHI M,MICHIUCHI H,WANG Z J,et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Materialia,2006,54:5179-5184.
|
[42] |
LU A Q,ZHANG Y,LI Y,et al. Effect of Nanocrystalline and Twin Boundaries on Corrosion Behavior of 316L Stainless Steel using SMAT[J]. Acta Metall Sin (Engl.Lett.),2006,19(3):183-189.
|
[43] |
BALUSAMY T,SANKARA N,RAVICHANDRAN T S N,et al. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel[J]. Corrosion Science,2013,74:332-344.
|
[44] |
LALEH M,FARZAD K. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy[J]. Journal of Alloys and Compounds,2011,509:9150-9156.
|
[45] |
CHUI P F,SUN K N,SUN C,et al. Effect of surface nanocrystallization induced by fast multiple rotation rolling on hardness and corrosion behavior of 316L stainless steel[J]. Applied Surface Science,2011,257:6787-6791.
|
[46] |
HAO Y W,DENG B,ZHONG C,et al. Effect of Surface Mechanical Attrition Treatment on Corrosion Behavior of 316 Stainless Steel[J]. Jouranal of Iron and Steel Research,International,2009,16(2):68-72.
|
[47] |
BALUSAMY T,SATENDRA K,SANKARA T S N N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel[J]. Corrosion Science,2010,52:3826-3834.
|