高级检索

    L360钢在H2S/CO2共存体系中的腐蚀行为及腐蚀预测模型

    廖柯熹, 赵建华, 夏凤, 周飞龙, 赵帅, 景红

    廖柯熹, 赵建华, 夏凤, 周飞龙, 赵帅, 景红. L360钢在H2S/CO2共存体系中的腐蚀行为及腐蚀预测模型[J]. 腐蚀与防护, 2020, 41(3): 16-21. DOI: 10.11973/fsyfh-202003003
    引用本文: 廖柯熹, 赵建华, 夏凤, 周飞龙, 赵帅, 景红. L360钢在H2S/CO2共存体系中的腐蚀行为及腐蚀预测模型[J]. 腐蚀与防护, 2020, 41(3): 16-21. DOI: 10.11973/fsyfh-202003003
    LIAO Kexi, ZHAO Jianhua, XIA Feng, ZHOU Feilong, ZHAO Shuai, JING Hong. Corrosion Behavior and Corrosion Prediction Model of L360 Steel in H2S/CO2 Coexistence System[J]. Corrosion & Protection, 2020, 41(3): 16-21. DOI: 10.11973/fsyfh-202003003
    Citation: LIAO Kexi, ZHAO Jianhua, XIA Feng, ZHOU Feilong, ZHAO Shuai, JING Hong. Corrosion Behavior and Corrosion Prediction Model of L360 Steel in H2S/CO2 Coexistence System[J]. Corrosion & Protection, 2020, 41(3): 16-21. DOI: 10.11973/fsyfh-202003003

    L360钢在H2S/CO2共存体系中的腐蚀行为及腐蚀预测模型

    基金项目: 

    国家自然科学基金(51674212)

    详细信息
      通讯作者:

      赵建华, E-mail:1573777267@qq.com

    • 中图分类号: TT174

    Corrosion Behavior and Corrosion Prediction Model of L360 Steel in H2S/CO2 Coexistence System

    • 摘要: 以H2S分压、CO2分压、温度和流速为变量,采用高温高压反应釜模拟了L360天然气管道的腐蚀过程。进行了9组正交试验,采用SEM、EDS、XRD表征腐蚀产物。结果表明:当CO2/H2S分压比为33~300时,腐蚀产物主要为FeS,反应由H2S主导且以均匀腐蚀为主,各影响因素排序为H2S分压>温度>流速>CO2分压。建立了H2S/CO2分压比为33~300的腐蚀预测模型,考虑上述4个因素的影响,并采用MATLAB多元线性回归求得各参数值,验证可知建立的腐蚀预测模型精确度较好。
      Abstract: Using H2S partial pressure, CO2 partial pressure, temperature and flow rate as variables, a high temperature and high pressure reactor was used to simulate the corrosion process of L360 natural gas pipeline. Nine orthogonal experiments were performed, and corrosion products were characterized by SEM, EDS, and XRD. The results show that when CO2/H2S partial pressure ratio was 33~300, the main corrosion products were FeS, the reactions were dominated by H2S and most of them were uniform corrosion. The order of the influencing factors was as follows:H2S partial pressure > temperature > flow rate > CO2 partial pressure. A corrosion prediction model with a H2S/CO2 partial pressure ratio of 33~300 was established. Considering the effects of the above four factors, MATLAB multivariate linear regression was used to obtain the values of various parameters. It was verified that the accuracy of the corrosion prediction model was good.
    • [1] 张智, 李晶, 张华礼, 等. 基于腐蚀时间效应的含H2S/CO2环境中的腐蚀速率预测模型[J]. 材料保护, 2018, 51(3):41-45.
      [2] 张晨. CO2/H2S腐蚀体系中缓蚀剂的缓蚀机理及协同效应研究[D]. 北京:北京化工大学, 2018.
      [3]

      HE W, KNUDSEN O Ø, DIPLAS S. Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-[J]. Corrosion Science, 2009, 51(12):2811-2819.

      [4]

      LIU Z, GAO X, DU L, et al. Comparison of corrosion behavior of low-alloy pipeline steel exposed to H2S/CO2-saturated brine and vapour-saturated H2S/CO2 environments[J]. Electrochimica Acta, 2017, 23(2):528-541.

      [5]

      QIU Z, XIONG C, CHANG Z, et al. Major corrosion factors in the CO2 and H2S coexistent environment and the relative anti-corrosion method:Taking Tazhong I gas field, Tarim Basin, as an example[J]. Petroleum Exploration and Development, 2012, 39(2):256-260.

      [6] 马新元. 浅析CO2腐蚀和H2S腐蚀的影响因素[J]. 云南化工, 2018, 45(7):84-86.
      [7] 王霞, 唐佳, 陈玉祥,等. 流速对L360管线钢在H2S/CO2环境中腐蚀行为的影响[J]. 表面技术, 2018, 47(2):157-163.
      [8] 罗戏雨, 杨皓洁. 油气开发中CO2/H2S对管线腐蚀规律研究[J]. 当代化工, 2018, 47(7):1501-1504,1510.
      [9] 钱进森, 李振东, 刘月发,等. 低H2S/CO2分压比下油管钢腐蚀产物膜特征及形成机制研究[J]. 焊管, 2015, 38(6):11-15.
      [10] 隋义勇, 孙建波, 孙冲,等. 温度和CO2/H2S分压比对BG90SS钢管腐蚀行为的影响[J]. 材料热处理学报, 2014, 35(增2):102-106.
      [11] 任建勋, 袁宗明, 贺三,等. 气体分压比对20#钢在H2S/CO2环境中腐蚀的影响[J]. 腐蚀与防护, 2013, 34(8):706-708,717.
      [12] 张智, 李晶, 张华礼,等. 基于腐蚀时间效应的含H2S/CO2环境中的腐蚀速率预测模型[J]. 材料保护, 2018, 51(3):41-45.
      [13] 冯成. 金属材料生产加工工艺质量检测与物理性能试验标准规范第2卷[M]. 北京:金版电子出版公司.
      [14] 赵雪会, 徐自强, 韩燕,等. 油管钢在酸性模拟环境下耐腐蚀性能研究[J]. 石油机械, 2011, 39(1):8-12,95.
      [15] 刘小伟, 徐振臻, 刘英坤. 某油田海底输油管线X65钢缓蚀剂筛选与评价方法[J]. 全面腐蚀控制, 2018, 32(2):29-33,77.
      [16]

      BROWN B,SRDJAN N,SHILPHA P. CO2 corrosion in the presence of trace amounts of hydrogen sulfide[C]//Proceedings of the Corrosion 2004,[S.l.]:Ohio University, USA, 2004.

      [17]

      REN C, LIU D, BAI Z, et al. Corrosion behavior of oil tube steel in simulant solution with hydrogen sulfide and carbon dioxide[J]. Materials Chemistry and Physics, 2005, 93(2/3):305-309.

      [18]

      STEPHEN N S, MICHAEL W J. Corrosion of carbon steel by H2S in CO2 containing oilfield environments[C]//San Diego. California:NACE International, 2006:1-15.

      [19] 杨建炜, 张雷, 丁睿明, 等. 管线钢在湿气介质中的H2S/CO2腐蚀行为研究[J]. 材料工程, 2008(11):49-53.
      [20] 李湛伟, 范洪远, 吴华. H2S/CO2及其共存条件下腐蚀研究进展[J]. 河南城建学院学报, 2010, 19(1):59-64.
      [21] 刘宏波, 王书淼. CO2、H2S对油气管道内腐蚀影响机制[J]. 油气储运, 2007(12):43-46.
      [22] 范兆廷, 袁宗明, 刘佳, 等. H2S及CO2对管道腐蚀机理与防护研究[J]. 油气田地面工程, 2008(10):39-40.
      [23]

      LI Q, BAI Z, HUANG D, et al. Predictive model for corrosion rate of oil tubes in CO2/H2S coexistent environment Part Ⅰ:building of model[J]. Journal of Southwest Jiaotong University, 2004(2):141-147.

    • 期刊类型引用(13)

      1. 吴小平,杨罗,田晓龙. 基于RS-ISOA-KELM的输气管道内腐蚀速率预测方法. 油气储运. 2024(02): 180-188+221 . 百度学术
      2. 张金龙,江潘,廖柯熹,何国玺. 流动条件下X65钢在含氧体系下的腐蚀行为及腐蚀预测模型. 材料保护. 2024(04): 70-79 . 百度学术
      3. 肖雯雯,张文博,林德云,葛鹏莉,许艳艳,廖柯熹,杨娜. 塔河油田H_2S-CO_2-O_2共存体系下伴生气管道选材和内涂层评价. 材料保护. 2023(02): 44-50 . 百度学术
      4. 马文骏,李金灵,屈撑囤,朱世东,杨博,鱼涛. 管线钢在湿CO_2和H_2S环境中的腐蚀行为研究. 能源化工. 2023(01): 18-23 . 百度学术
      5. 覃艳民,李辛庚,安江峰,樊志彬,吴军,王晓明. 材料腐蚀数据的挖掘方法. 腐蚀与防护. 2023(04): 72-81 . 本站查看
      6. 唐鑫,廖柯熹,黄元洁,何国玺. 总压对L360NS钢在CO_2/H_2S/O_2体系中腐蚀行为的影响. 材料保护. 2023(06): 75-81 . 百度学术
      7. 张金龙,王丹丹,魏晨亮,李霞,邹庆. X65钢多因素协同腐蚀行为和腐蚀预测模型研究. 材料保护. 2023(08): 97-102+132 . 百度学术
      8. 廖宇斌,刘国文. 油气管道CO_2-H_2S/SRB腐蚀机理及预测模型研究进展. 化工设备与管道. 2023(04): 97-104 . 百度学术
      9. 廖柯熹,江潘,刘鑫,陈璐洁,鲜俊,何国玺,邹庆. K页岩气田输水管道腐蚀预测模型的建立. 腐蚀与防护. 2023(10): 78-84 . 本站查看
      10. 李霄,李磊磊,黄晓辉,韦奉,吕祥鸿. L360钢在SRB/CO_2环境中的腐蚀行为研究. 焊管. 2022(04): 8-12 . 百度学术
      11. 李彦鹏,朱世东,李金灵,袁军涛. 油气管道H_2S/CO_2腐蚀与防护技术研究进展. 腐蚀与防护. 2022(06): 1-6+12 . 本站查看
      12. 丁杰. 原油集输管道在CO_2和H_2S环境下的腐蚀规律研究. 能源化工. 2021(04): 68-71 . 百度学术
      13. 宋鹏迪,李磊,胥聪敏. 某含硫油田20G集输干线内腐蚀穿孔原因分析. 焊管. 2020(12): 39-45 . 百度学术

      其他类型引用(4)

    计量
    • 文章访问数:  9
    • HTML全文浏览量:  1
    • PDF下载量:  4
    • 被引次数: 17
    出版历程
    • 收稿日期:  2019-04-19
    • 刊出日期:  2020-03-14

    目录

      /

      返回文章
      返回