高级检索

    深海油气设施用22Cr双相不锈钢的氢致应力开裂敏感性

    安维峥, 姚星城, 胡丽华, 王竹, 王晶, 张雷

    安维峥, 姚星城, 胡丽华, 王竹, 王晶, 张雷. 深海油气设施用22Cr双相不锈钢的氢致应力开裂敏感性[J]. 腐蚀与防护, 2021, 42(7): 14-19. DOI: 10.11973/fsyfh-202107003
    引用本文: 安维峥, 姚星城, 胡丽华, 王竹, 王晶, 张雷. 深海油气设施用22Cr双相不锈钢的氢致应力开裂敏感性[J]. 腐蚀与防护, 2021, 42(7): 14-19. DOI: 10.11973/fsyfh-202107003
    AN Weizheng, YAO Xingcheng, HU Lihua, WANG Zhu, WANG Jing, ZHANG Lei. Hydrogen Induced Stress Cracking Susceptibility of 22Cr Duplex Stainless Steel Used in Deep Sea Oil and Gas Facilities[J]. Corrosion & Protection, 2021, 42(7): 14-19. DOI: 10.11973/fsyfh-202107003
    Citation: AN Weizheng, YAO Xingcheng, HU Lihua, WANG Zhu, WANG Jing, ZHANG Lei. Hydrogen Induced Stress Cracking Susceptibility of 22Cr Duplex Stainless Steel Used in Deep Sea Oil and Gas Facilities[J]. Corrosion & Protection, 2021, 42(7): 14-19. DOI: 10.11973/fsyfh-202107003

    深海油气设施用22Cr双相不锈钢的氢致应力开裂敏感性

    基金项目: 

    高技术船舶科研项目(2019GXB01-01-004)

    详细信息
      通讯作者:

      王竹, E-mail:wangzhu1303@126.com

    • 中图分类号: TG174

    Hydrogen Induced Stress Cracking Susceptibility of 22Cr Duplex Stainless Steel Used in Deep Sea Oil and Gas Facilities

    • 摘要: 利用腐蚀电化学方法、四点弯曲和慢应变速率试验等研究了阴保电位、外加应力和氢含量对深海油气设施常用22Cr双相不锈钢氢致应力开裂敏感性的影响。结果表明:当阴保电位负于-990 mV (SCE,下同)时,22Cr双相不锈钢在海水中的析氢反应显著加速。随阴保电位负移和外加应力增大,22Cr双相不锈钢氢脆敏感性增加,在-1 150 mV阴保电位下,当拉应力超过95%σ0.2时,可能出现氢致裂纹;在98%σ0.2加载条件下,双相不锈钢中氢含量为10.6~12.6 mg/L时,可能诱发氢致裂纹。
      Abstract: Using corrosion electrochemical methods, four-point bending and slow strain rate tests, the effects of cathodic potential, applied stress and hydrogen content on the hydrogen-induced stress cracking sensitivity of 22Cr duplex stainless steel commonly used in deep-sea oil and gas facilities were studied. The results showed that the hydrogen evolution reaction of 22Cr duplex stainless steel in seawater significantly accelerated when the cathodic protection potential was negative than -990 mV (vs. SCE, the same below). With the negative shift of the cathodic protection potential and the increase of the applied stress, the hydrogen embrittlement sensitivity of 22Cr duplex stainless steel increased. When the tensile stress exceeded 95%σ0.2, hydrogen-induced cracking might occur at a negative potential of -1 150 mV. Under 98%σ0.2 loading condition, when the hydrogen content of duplex stainless steel reached 10.6-12.6 mg/L, hydrogen-induced cracking might be induced.
    • [1]

      ANTONY P J,SINGH R R K,RAMAN R,et al. Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity[J]. Corrosion Science,2010,52:1404-1412.

      [2]

      HOU Y,ZHAO J,CHENG C Q,ZHANG L,et al. The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation[J]. Journal of Alloys and Compounds,2020,830:154422.

      [3]

      LI J,DU C W,LIU Z Y,et al. Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 1:microstructure evolution during isothermal aging at 850℃ and evaluation of anticorrosion properties by methods of cyclic potentiodynamic polarization and electrochemical impedance tests[J]. Construction and Building Materials,2018,189:1286-1293.

      [4]

      YIN L Q,LIU Y Y,QIAN S S,et al. Synergistic effect of cold work and hydrogen charging on the pitting susceptibility of 2205 duplex stainless steel[J]. Electrochimica Acta,2019,328:135081.

      [5]

      TAYLOR T S,PENDINGTON T,BIRD R. Foinaven super duplex materials crack investigation[C]//Offshore Technology Conference. Houston:Onepetro,1999:10965.

      [6]

      HESJEVIK S M,OLSEN S,RØRVIK G. Hydrogen embrittlement from cathodic protection on super martensitic stainless steels-case history[C]//Corrosion. Houston:NACE,2004:04545.

      [7]

      HUIZINGA S,MCLOUGHLIN B,HANNAH I M,et al. Failure of a subsea super duplex manifold hub by HISC and implications for design[C]//Corrosion. Houston:NACE,2006:145.

      [8] 郑传波,唐祝君,申小兰. 微观组织对2205双相不锈钢氢脆敏感性的影响[J]. 金属热处理,2015,40(9):39-44.
      [9] 闫秉昊,王孝建,刘欣. 固溶温度对2205双相不锈钢氢脆敏感性的影响[J]. 四川冶金,2017,39(6):14-19.
      [10]

      LLANG X Z,ZHAO G H,DODGE M F,et al. Hydrogen embrittlement in super duplex stainless steels[J]. Materialia,2020(9):100524.

      [11]

      OLDEN V,SAAI A,JEMBLIE L,et al. FE simulation of hydrogen diffusion in duplex stainless steel[J]. International Journal of Hydrogen Energy,2014,13:1156-1163.

      [12]

      TOHME E,BARNIER V,CHRISTIEN F,et al. SKPFM study of hydrogen in a two phase material:experiments and modelling[J]. International Journal of Hydrogen Energy,2019,44:18597-18605.

      [13]

      KIM J,TASAN C C. Microstructural and micro-mechanical characterization during hydrogen charging:an in situ scanning electron microscopy study[J]. International Journal of Hydrogen Energy,2019,44:6333-6343.

      [14]

      SOBOL O,HOLZLECHNER G,NOLZE G,et al. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel microstructure[J]. Materials Science & Engineering A,2016,676:271-277.

      [15]

      TAO P,GONG J M,WANG Y F,et al. Modeling of hydrogen diffusion in duplex stainless steel based on microstructure using finite element method[J]. International Journal of Pressure Vessels and Piping,2020,180:104031.

      [16]

      CLAEYS L,DEPOVER T,GRAEVE I D,et al. First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel[J]. Materials Characterization,2019,156:109843.

      [17]

      SILVERSTEIN R,ELIEZER D. Hydrogen behavior in SAF 2205 duplex stainless steel[J]. Journal of Alloys and Compounds,2017,695:2689-2695.

      [18]

      SILVERSTEIN R,ELIEZER D. Hydrogen trapping mechanism of different duplex stainless steels alloys[J]. Journal of Alloys and Compounds,2015,644:280-286.

      [19]

      KIM S J,OKIDO M,MOON K M. An electrochemical study of cathodic protection of steel used for marine structures[J]. Korean Journal of Chemical Engineering,2003,20(3):560-565.

      [20] 童海生,孙彦辉,宿彦京,等. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报,2019,39(2):130-137.
      [21] 韩舞鹰. 南海海洋化学[M]. 北京:科学出版社,1998.
      [22] 杨耀东,鲁旷达,曹文海,等. X70钢和X80钢在鹰潭土壤模拟溶液中的氢脆敏感性[J]. 腐蚀与防护,2015,36(9):810-813.
      [23] 褚武扬,乔利杰,李金许. 氢脆和应力腐蚀:基础部分[M]. 北京:科学出版社,2013.
    • 期刊类型引用(3)

      1. 陈岗,王郁林,王志成,王应植. 湿硫化氢环境下分层缺陷检测与评价方法研究. 石油化工设备. 2025(02): 21-27 . 百度学术
      2. 刘子轩,王竹,唐德志,金杰,张雷. 油气工业中氢对双相不锈钢腐蚀行为的影响. 工程科学学报. 2024(04): 684-694 . 百度学术
      3. 任峻晴,马玉乐,马宇欣,高少琪,仇宇豪,陈国博,夏树伟,于良民. 含哒嗪功能结构酰胺醚类化合物的合成及其缓蚀性能的实验评价与理论模拟. 高等学校化学学报. 2024(10): 40-52 . 百度学术

      其他类型引用(1)

    计量
    • 文章访问数:  9
    • HTML全文浏览量:  0
    • PDF下载量:  5
    • 被引次数: 4
    出版历程
    • 收稿日期:  2020-07-14
    • 刊出日期:  2021-07-14

    目录

      /

      返回文章
      返回