高级检索

    超滑表面技术及其在合金防腐蚀方面应用的研究进展

    孙静, 魏露霞, 李炳志, 张海兵, 赵雨波, 孟晓

    孙静, 魏露霞, 李炳志, 张海兵, 赵雨波, 孟晓. 超滑表面技术及其在合金防腐蚀方面应用的研究进展[J]. 腐蚀与防护, 2022, 43(11): 78-82,87. DOI: 10.11973/fsyfh-202211014
    引用本文: 孙静, 魏露霞, 李炳志, 张海兵, 赵雨波, 孟晓. 超滑表面技术及其在合金防腐蚀方面应用的研究进展[J]. 腐蚀与防护, 2022, 43(11): 78-82,87. DOI: 10.11973/fsyfh-202211014
    SUN Jing, WEI Luxia, LI Bingzhi, ZHANG Haibing, ZHAO Yubo, MENG Xiao. Research Progress of Slippery Liquid Infused Porous Surface Technology and Its Application to Alloy Corrosion Protection[J]. Corrosion & Protection, 2022, 43(11): 78-82,87. DOI: 10.11973/fsyfh-202211014
    Citation: SUN Jing, WEI Luxia, LI Bingzhi, ZHANG Haibing, ZHAO Yubo, MENG Xiao. Research Progress of Slippery Liquid Infused Porous Surface Technology and Its Application to Alloy Corrosion Protection[J]. Corrosion & Protection, 2022, 43(11): 78-82,87. DOI: 10.11973/fsyfh-202211014

    超滑表面技术及其在合金防腐蚀方面应用的研究进展

    详细信息
      通讯作者:

      孙静, E-mail:sj_sdust@126.com

    • 中图分类号: TG174

    Research Progress of Slippery Liquid Infused Porous Surface Technology and Its Application to Alloy Corrosion Protection

    • 摘要: 液体灌注型多孔超滑表面(简称超滑表面)因具有稳定的疏水性,良好的耐蚀性和自修复能力,被广泛应用于去冰、防污、防腐蚀等领域。本文详细介绍了超滑表面的制备过程、防腐蚀机理及其在合金防腐蚀方面应用的研究进展。最后提出了超滑表面在合金防腐蚀应用中存在的问题,并对未来研究方向提出了展望。
      Abstract: Slippery liquid infused porous surface (SLIPS) is widely used in deicing, anti-fouling, anti-corrosion and other fields because of its stable hydrophobicity, good corrosion resistance and self-healing ability. The preparation process, corrosion protection mechanism of SLIPS and the research progress of its application to alloy anti-corrosion are introduced in detail in this paper. Finally, the problems existing in the application of SLIPS to alloy corrosion protection are pointed out, and the future research directions are prospected.
    • [1]

      VENKATESAN R, VENKATASAMY M A, BHASKARAN T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. British Corrosion Journal, 2002, 37(4):257-266.

      [2]

      WANG W, WANG H L, ZHAO J, et al. Self-healing performance and corrosion resistance of graphene oxide-mesoporous silicon layer-nanosphere structure coating under marine alternating hydrostatic pressure[J]. Chemical Engineering Journal, 2019, 361:792-804.

      [3]

      ZHANG X F, CHEN R J, HU J M. Superhydrophobic surface constructed on electrodeposited silica films by two-step method for corrosion protection of mild steel[J]. Corrosion Science, 2016, 104:336-343.

      [4]

      LIU W, XU Q J, HAN J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance[J]. Corrosion Science, 2016, 110:105-113.

      [5]

      VILLEGAS M, ZHANG Y X, ABU JARAD N, et al. Liquid-infused surfaces:a review of theory, design, and applications[J]. ACS Nano, 2019, 13(8):8517-8536.

      [6]

      TSENG K K, LU W H, HAN C W, et al. Highly-transparent slippery liquid-infused porous surfaces made with silica nanoparticulate thin films[J]. Thin Solid Films, 2018, 653:67-72.

      [7]

      WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.

      [8] 曹京宜, 张海永, 杨文静, 等. KCC-1/PVDF超疏水与超滑表面的制备及其性能研究[J]. 表面技术, 2020, 49(6):152-158.
      [9]

      LI Y K, CHEN R R, ZHANG L L, et al. Fabrication and antifouling behavior research of self-healing lubricant impregnated films with dynamic surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 582:123865.

      [10]

      OUYANG Y B, CAO Q, LI B Z, et al. Nanofluid-infused slippery surface:bioinspired coating on Zn with high corrosion inhibition performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608:125492.

      [11]

      MIGUEL S, HEHN A, BOURGAUD F. Nepenthes:State of the art of an inspiring plant for biotechnologists[J]. Journal of Biotechnology, 2018, 265:109-115.

      [12]

      QIU R, ZHANG Q, WANG P, et al. Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 453:132-141.

      [13]

      WANG P, ZHANG D, LU Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:240-247.

      [14]

      WEI C Q, ZHANG G F, ZHANG Q H, et al. Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:a facile approach to highly stable bioinspired surface for biofouling resistance[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34810-34819.

      [15]

      LI Q, GUO Z G. Lubricant-infused slippery surfaces:Facile fabrication, unique liquid repellence and antireflective properties[J]. Journal of Colloid and Interface Science, 2019, 536:507-515.

      [16]

      WANG P, LU Z, ZHANG D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 2015, 93:159-166.

      [17]

      XU Y, LIU M Y. Soiling and corrosion behaviors on fluorinated anodized TiO2 surface infused by perfluoropolyether[J]. Surface and Coatings Technology, 2016, 307:332-344.

      [18]

      LONG Y F, YIN X X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal, 2020, 401:126137.

      [19]

      LIU Y B, TIAN Y, CHEN J, et al. Design and preparation of bioinspired slippery liquid-infused porous surfaces with anti-icing performance via delayed phase inversion process[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 588:124384.

      [20]

      ZHANG G F, ZHANG Q H, CHENG T T, et al. Polyols-infused slippery surfaces based on magnetic Fe3O4-functionalized polymer hybrids for enhanced multifunctional anti-icing and deicing properties[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2018, 34(13):4052-4058.

      [21]

      ZHANG M L, YU J, CHEN R R, et al. Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances[J]. Journal of Alloys and Compounds, 2019, 803:51-60.

      [22]

      KRATOCHVIL M J, WELSH M A, MANNA U, et al. Slippery liquid-infused porous surfaces that prevent bacterial surface fouling and inhibit virulence phenotypes in surrounding planktonic cells[J]. ACS Infectious Diseases, 2016, 2(7):509-517.

      [23]

      ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14):2071-2076.

      [24] 吴德权, 张达威, 刘贝, 等. 超滑表面(LIS/SLIPS)的设计与制备研究进展[J]. 表面技术, 2019, 48(1):90-101.
      [25] 李汉红, 张玉红. 超滑材料研究进展[J]. 胶体与聚合物, 2019, 37(1):43-45.
      [26]

      HU J M, LIU L, ZHANG J Q, et al. Electrodeposition of silane films on aluminum alloys for corrosion protection[J]. Progress in Organic Coatings, 2007, 58(4):265-271.

      [27]

      LU Z, WANG P, ZHANG D. Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment[J]. Corrosion Science, 2015, 91:287-296.

      [28]

      ZHANG H, HOU C P, SONG L X, et al. A stable 3D Sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating[J]. Chemical Engineering Journal, 2018, 334:598-610.

      [29]

      LIU H, HUANG J Y, CHEN Z, et al. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330:26-35.

      [30]

      LIU M M, HOU Y Y, LI J, et al. Transparent slippery liquid-infused nanoparticulate coatings[J]. Chemical Engineering Journal, 2018, 337:462-470.

      [31]

      OUYANG Y B, QIU R, XIAO Y M, et al. Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of NdFeB magnetic material[J]. Chemical Engineering Journal, 2019, 368:331-339.

      [32]

      QIN Y K, LI Y, ZHANG D, et al. Wettability, durability and corrosion properties of slippery laser-textured aluminum alloy surface under water impact[J]. Surface and Coatings Technology, 2020, 394:125856.

      [33] 肖亚梅. 仿生超滑表面海洋腐蚀与生物污损防护性能研究[D]. 青岛:中国石油大学(华东), 2018.
      [34]

      ZHANG S H, HOU L F, DU H Y, et al. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion[J]. Corrosion Science, 2020, 167:108531.

      [35]

      WRIGHT R F, BRAND E R, ZIOMEK-MOROZ M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines[J]. Electrochimica Acta, 2018, 290:626-638.

      [36]

      SOUSA M F B, LOUREIRO H C, BERTRAN C A. Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel[J]. Surface and Coatings Technology, 2020, 382:125160.

      [37]

      XIANG T F, ZHANG M, SADIG H R, et al. Slippery liquid-infused porous surface for corrosion protection with self-healing property[J]. Chemical Engineering Journal, 2018, 345:147-155.

      [38]

      OUYANG Y B, ZHAO J, QIU R, et al. Liquid infused surface based on hierarchical dendritic iron wire array:an exceptional barrier to prohibit biofouling and biocorrosion[J]. Progress in Organic Coatings, 2019, 136:105216.

      [39]

      YANG S S, QIU R, SONG H Q, et al. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate:preparation and corrosion protection application[J]. Applied Surface Science, 2015, 328:491-500.

      [40]

      JEONG N, JWA E, KIM C, et al. Direct synthesis of carbon nanotubes using Cu-Sn catalyst on Cu substrates and their corrosion behavior in 0.6 M NaCl solution[J]. Applied Surface Science, 2017, 423:283-292.

      [41]

      SHI Z Q, OUYANG Y B, QIU R, et al. Bioinspired superhydrophobic and oil-infused nanostructured surface for Cu corrosion inhibition:a comparison study[J]. Progress in Organic Coatings, 2019, 131:49-59.

      [42] 徐振邦, 陆振涛, 柯喜敏, 等. 铝合金电子元器件的表面涂层与耐蚀性能研究[J]. 电镀与精饰, 2019, 41(10):9-12.
      [43] 马红雷. 镍基-氧化铝复合镀层的电沉积法制备及其性能研究[J]. 电镀与精饰, 2018, 40(2):5-10.
      [44]

      TUO Y J, ZHANG H F, CHEN W P, et al. Corrosion protection application of slippery liquid-infused porous surface based on aluminum foil[J]. Applied Surface Science, 2017, 423:365-374.

      [45]

      YUAN S C, ZHANG X G, LIN D, et al. A novel slippery surface with enhanced stability and corrosion resistance[J]. Progress in Organic Coatings, 2020, 142:105563.

      [46]

      WANG X, JING C, CHEN Y X, et al. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg-Al layered double hydroxide coating on AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys, 2020, 8(1):291-300.

      [47]

      JOO J, KIM D, MOON H S, et al. Durable anti-corrosive oil-impregnated porous surface of magnesium alloy by plasma electrolytic oxidation with hydrothermal treatment[J]. Applied Surface Science, 2020, 509:145361.

      [48]

      JIANG D, XIA X C, HOU J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chemical Engineering Journal, 2019, 373:285-297.

      [49]

      EL-SAYED A R, MOHRAN H S, ABD EL-LATEEF H M. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution[J]. Journal of Power Sources, 2010, 195(19):6924-6936.

      [50]

      QIU Z H, QIU R, XIAO Y M, et al. Slippery liquid-infused porous surface fabricated on CuZn:a barrier to abiotic seawater corrosion and microbiologically induced corrosion[J]. Applied Surface Science, 2018, 457:468-476.

      [51]

      WANG P, LI T P, ZHANG D.Fabrication of non-wetting surfaces on zinc surface as corrosion barrier[J]. Corrosion Science, 2017, 128:110-119.

    • 期刊类型引用(0)

      其他类型引用(2)

    计量
    • 文章访问数:  12
    • HTML全文浏览量:  0
    • PDF下载量:  7
    • 被引次数: 2
    出版历程
    • 收稿日期:  2021-02-19
    • 刊出日期:  2022-11-14

    目录

      /

      返回文章
      返回