高级检索

    热致型形状记忆聚合物的研究现状与应用进展

    汤龙皓, 王彦玲, 李永飞, 李强, 康远波

    汤龙皓, 王彦玲, 李永飞, 李强, 康远波. 热致型形状记忆聚合物的研究现状与应用进展[J]. 机械工程材料, 2019, 43(9): 1-7. DOI: 10.11973/jxgccl201909001
    引用本文: 汤龙皓, 王彦玲, 李永飞, 李强, 康远波. 热致型形状记忆聚合物的研究现状与应用进展[J]. 机械工程材料, 2019, 43(9): 1-7. DOI: 10.11973/jxgccl201909001
    TANG Longhao, WANG Yanling, LI Yongfei, LI Qiang, KANG Yuanbo. Research Status and Application Progress of Thermal-Induced Shape Memory Polymer[J]. Materials and Mechanical Engineering, 2019, 43(9): 1-7. DOI: 10.11973/jxgccl201909001
    Citation: TANG Longhao, WANG Yanling, LI Yongfei, LI Qiang, KANG Yuanbo. Research Status and Application Progress of Thermal-Induced Shape Memory Polymer[J]. Materials and Mechanical Engineering, 2019, 43(9): 1-7. DOI: 10.11973/jxgccl201909001

    热致型形状记忆聚合物的研究现状与应用进展

    基金项目: 

    国家科技重大专项项目(2016ZX05005006-002)

    详细信息
      作者简介:

      汤龙皓(1989-),男,山东东营人,博士研究生

    • 中图分类号: THB381

    Research Status and Application Progress of Thermal-Induced Shape Memory Polymer

    • 摘要: 综述了热致型形状记忆聚合物的形状记忆效应、形状记忆机理、类型和制备方法,探讨了形状记忆性能的影响因素,并介绍了热致型形状记忆聚合物的应用现状,展望了热致型形状记忆聚合物的发展。
      Abstract: The shape memory effect, shape memory mechanism, types and preparation methods of thermal-induced shape memory polymer are reviewed. The influencing factors of shape memory performance are discussed. The application status of thermal-induced shape memory polymer is introduced. The application prospect of thermal induced shape memory polymer is expected.
    • [1]

      VERNON L B, VERNON H M. Process of manufacturing articles of thermoplastic synthetic resins:US 1941.

      [2]

      HAGER M D, BODE S, WEBER C, et al. Shape memory polymers:Past, present and future developments[J]. Progress in Polymer Science, 2015, 49/50:3-33.

      [3]

      HU J L, ZHU Y, HUANG HH, et al. Recent advances in shape-memory polymers:Structure, mechanism, functionality, modeling and applications[J]. Progress in Polymer Science, 2012, 37(12):1720-1763.

      [4]

      BEHL M, RAZZAQ M Y, LENDLEIN A. Multifunctional shape-memorypolymers[J]. Advanced Materials, 2010, 22(31):3388-3410.

      [5]

      ANDREAS L, STEFFEN K. Shape-memory polymers[J]. Angewandte Chemie, 2002;41(12):2034-2057.

      [6] 杨青, 郑百林, 武秀根, 等. 形状记忆高分子材料记忆行为机理的理论分析[J]. 材料工程, 2006(增刊1):492-494.
      [7]

      PARAMESWARANPILLAI J, RAMANAN S P, JOSE S, et al. Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics[J]. Industrial & Engineering Chemistry Research, 2017, 56(47):14069-14077.

      [8]

      BELMONTE A, GUZMÁN D, FERNÁNDEZ-FRANCOS X, et al. Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy "click"systems[J]. Polymers, 2015, 7(10):2146-2164.

      [9]

      LIU H C, LI J B, GAO X X, et al. Double network epoxies with simultaneous high mechanical property and shape memory performance[J]. Journal of Polymer Research, 2018, 25(2):24.

      [10]

      JEOUNG H M, LEE S Y, KIM B K. Shape memory polyurethane containing amorphous reversible phase[J]. Journal of Materials Science, 2000, 35(7):1579-1583.

      [11]

      LIN J R, CHEN L W. Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelasticmodel[J]. Journal of Applied Polymer Science, 1999, 73(7):1305-1319.

      [12]

      WENG N C, WU C F, TSEN W C, et al. Synthesis and properties of shape memory polyurethanes generated from schiff-base chain extender containing benzoyl and pyridyl rings[J]. Designed Monomers and Polymers, 2018, 21(1):55-63.

      [13]

      PISZCZYK Ł, STRANKOWSKI M, KOSMELA P. Study of the effect of thermally reduced graphene oxide on the physical and mechanical properties of flexible polyurethane foams[J]. Polymer Composites, 2017, 38(10):2248-2253.

      [14]

      OHKI T, NI Q Q, OHSAKO N, et al. Mechanical and shape memory behavior of composites with shape memory polymer[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(9):1065-1073.

      [15]

      YAN Z. Biodegradable polymers as drug delivery systems.[J]. 2004.

      [16]

      SCHÄFER H, HARTWIG A, KOSCHEK K. The nature of bonding matters:Benzoxazine based shape memory polymers[J]. Polymer, 2018, 135:285-294.

      [17]

      DESHMUKH P, YOON H, CHO S, et al. Impact of poly(ε-caprolactone) architecture on the thermomechanical and shape memory properties[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2017, 55(20):3424-3433.

      [18] 朱军, 倪海鹰, 杨万清, 等. 形状记忆材料聚己内酯复合材料性能研究[J]. 塑料工业, 2007, 35(9):60-61.
      [19] 马艳, 石文鹏, 赵辰阳, 等. 聚乳酸基可降解形状记忆聚合物的制备、结构与性能[J]. 化学学报, 2011, 69(6):719-724.
      [20]

      JIANG Z Y, CHANG Y, CHEN Z Z. Catalyst free synthesis of poly(l-lactic acid)-poly(propylene glycol) multiblock copolymers and their properties[J]. Journal of Applied Polymer Science, 2017, 134(37):45299.

      [21]

      KERAMATI M, GHASEMI I, KARRABI M, et al. Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite[J]. Fibers and Polymers, 2016, 17(7):1062-1068.

      [22]

      WANG K, ZHU G M, NIU L, et al. Shape memory effect and mechanical properties of cyanate ester-polybutadiene epoxy copolymer[J]. Journal of Polymer Research, 2014, 21(4):385.

      [23] 白克铭, 朱光明, 王燕, 等. SBS/PE-LD共混物的强化辐射交联研究[J]. 中国塑料, 2016, 30(11):13-18.
      [24] 李芝华, 陈明, 马立, 等. 聚氨酯改性环氧树脂形状记忆材料[J]. 宇航材料工艺, 2015, 45(1):24-27.
      [25] 牛古丹, 吴宝华, 牟宏晶, 等. PCL相对分子质量对形状记忆聚氨酯性能影响的研究[J]. 哈尔滨理工大学学报, 2014, 19(3):24-26.
      [26]

      FAN M J, LIU J L, LI X Y, et al. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system[J]. Thermochimica Acta, 2013, 554:39-47.

      [27]

      JING X H, LIU Y X, LIAO R, et al. Synthesis, characterization, and shape-memory performances of monoamine-toughened epoxyresin[J]. High Performance Polymers, 2016, 28(9):1082-1089.

      [28]

      BELMONTE A, GUZMÁN D, FERNÁNDEZ-FRANCOS X, et al. Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy "click"systems[J]. Polymers, 2015, 7(10):2146-2164.

      [29] 张玉芬, 姜雪, 武荣兰, 等. 改性多壁碳纳米管/聚氨酯形状记忆复合材料的制备及性能[J]. 材料科学与工程学报, 2016, 34(5):784-788.
      [30] 张志毅, 张焕, 寿金泉, 等. 原位制备还原氧化石墨烯增强环氧树脂基复合材料及其形状记忆性能[J]. 新型炭材料, 2015, 30(5):404-411.
      [31]

      NISHIKAWA M, WAKATSUKI K, TAKEDA N. Thermomechanical experiment and analysis on shape recovery properties of shape memory polymer influenced by fiber reinforcement[J]. Journal of Materials Science, 2010, 45(14):3957-3960.

      [32] 蓝承东, 艾娇艳, 陈权, 等. 碳纤维增强环氧基形状记忆材料的制备及性能研究[J]. 塑料科技, 2015, 43(1):27-31.
      [33] 江永飞.聚氨酯汽车座椅的设计和模塑方法[J].黎明化工,1993(4):21-22.
      [34]

      ENRIQUEZ-SARANO M, SCHAFF H V, ORSZULAK T A, et al. Valve repair improves the outcome of surgery for mitral regurgitation[J].Circulation,1995,91(4):1022-1028.

      [35]

      MAITLAND D J, METZGER M F, SCHUMANN D, et al.Photothermal properties of shape memory polymer micro-actuators for treating stroke[J]. Lasers in Surgery and Medicine, 2002, 30(1):1-11.

      [36]

      LENDLEIN A. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.

      [37]

      KOBAYASHI K, HAYASHI S. Woven fabric made of shape memory polymer:US 5128197[P]. 1992-07-07.

      [38]

      ZHANG R R, GUO X G, LIU Y J, et al. Theoretical analysis and experiments of a space deployable truss structure[J]. Composite Structures, 2014, 112(5):226-230.

    计量
    • 文章访问数:  30
    • HTML全文浏览量:  1
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-29
    • 修回日期:  2019-06-19
    • 刊出日期:  2019-09-19

    目录

      /

      返回文章
      返回