Rust Characteristics and Corrosion Resistance of Q235B steel and Cr-Bearing Weathering Steel in Wenchang Marine Atmosphere
-
摘要: 采用腐蚀失重法、扫描电镜(SEM)、X射线衍射(XRD)、电子探针(EMPA)等技术研究了暴露在文昌海洋大气环境中的Q235B钢和3Cr钢的锈层特征和耐蚀性。结果表明:Q235B钢的腐蚀深度大于3Cr钢的;随暴露时间的延长,两种钢的腐蚀深度均增大,大气暴露时间为1.5 a时,3Cr钢的相对腐蚀率明显下降。Q235B钢锈层存在较多裂纹,3Cr钢锈层致密,耐蚀性好。Q235B钢中Cl元素的富集降低了材料的耐蚀性,而3Cr钢中合金元素Cr富集在内锈层,Cl元素基本被阻滞在外锈层,提高了耐蚀性。Abstract: The rust layer characteristics and corrosion resistance of Q235B steel and 3Cr steel exposed to Wenchang marine atmosphere were studied by techniques such as corrosion weight loss method, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron micro probe (EMPA). The results show that the corrosion depth of Q235B steel was greater than that of 3Cr steel. The corrosion depth of both steels increased with the extension of exposure time. When the atmospheric exposure time was 1.5 a, the relative corrosion rate of 3Cr steel decreased obviously. There were many cracks in the rust layer of Q235B steel, and the rust layer of 3Cr steel was dense and had good corrosion resistance. The enrichment of Cl in Q235B steel reduced the corrosion resistance of the material, while the alloying element Cr in 3Cr steel was enriched in the inner rust layer, and the Cl element was basically blocked in the outer rust layer, which improved the corrosion resistance of the material.
-
-
[1] 柯伟,董俊华.有关耐候钢的那些事儿.中国公路,2016(11):29-32. [2] MORCILLO M, DÍAZ I, CHICO B, et al. Weathering steels:from empirical development to scientific design. A review. Corrosion Science, 2014, 83:6-31.
[3] 马元泰,李瑛,王福会.热带海洋性环境下CortenA(09CuPCrNi)耐候性研究.腐蚀科学与防护技术,2010,22(4):271-277. [4] 林翠,李晓刚,王光雍.金属材料在污染大气环境中初期腐蚀行为和机理研究进展.腐蚀科学与防护技术,2004,16(2):89-95. [5] 杨海洋,黄桂桥.四种耐候钢在青岛大气环境暴露6年腐蚀数据分析.腐蚀与防护,2014,35(8):805-807. [6] QIAN Y H, NIU D, XU J J, et al. The influence of chromium content on the electrochemical behavior of weathering steels. Corrosion Science, 2013, 71:72-77.
[7] QIAN Y H, MA C H, NIU D, et al. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels. Corrosion Science, 2013, 74:424-429.
[8] ZHANG Q C, WU J S, WANG J J, et al. Corrosion behavior of weathering steel in marine atmosphere. Materials Chemistry and Physics, 2003, 77(2):603-608.
[9] SCHWITTER H. Influence of accelerated weathering on the corrosion of low-alloy steels. Journal of the Electrochemical Society, 1980, 127(1):15.
[10] 穆山.文昌地区大气腐蚀环境因素分析.装备环境工程,2010,7(5):119-122,127. [11] 王建军,郭小丹,郑文龙,等.海洋大气暴露3年的碳钢与耐候钢表面锈层分析.腐蚀与防护,2002,23(7):288-291. [12] 陈新彦,陈大明,陈旭,等.热带海洋大气环境中耐候钢腐蚀特征与机理的研究.腐蚀科学与防护技术,2018,30(2):150-156. [13] RÉMAZEILLES C, REFAIT P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corrosion Science, 2007, 49(2):844-857.
[14] 熊慧欣,周立祥.不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用.岩石矿物学杂志,2008,27(6):559-566. [15] DILLMANN P, MAZAUDIER F, HCERLÉ S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corrosion Science, 2004, 46(6):1401-1429.
[16] YAMASHITA M, KONISHI H, MIZUKI J, et al. Nanostructure of protective rust layer on weathering steel examined using synchrotron radiation X-rays. Materials Transactions, 2004, 45(6):1920-1924.
[17] ZHANG Q,WANG J, JIANSHENG W U, et al.Effect of iron selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere.Acta Metallrugica Sinica,2001,37(2):193-196.
[18] 陈长风,路民旭,赵国仙,等.温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响.金属学报,2003,39(8):848-854. [19] 李晓刚,董超芳,肖葵,等.西沙海洋大气环境下典型材料腐蚀/老化行为与机理.北京:科学出版社,2014:78-81. [20] KAMIMURA T, KASHIMA K, SUGAE K, et al. The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel. Corrosion Science, 2012, 62:34-41.
[21] 汪川,曹公旺,潘辰,等.碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究.中国腐蚀与防护学报,2016,36(1):39-46.
计量
- 文章访问数: 11
- HTML全文浏览量: 0
- PDF下载量: 4