高级检索

    25Cr-20Ni-ODS钢在超临界水中的腐蚀行为

    胡梦, 沈朝, 张乐福

    胡梦, 沈朝, 张乐福. 25Cr-20Ni-ODS钢在超临界水中的腐蚀行为[J]. 腐蚀与防护, 2016, 37(4): 305-312. DOI: 10.11973/fsyfh-201604008
    引用本文: 胡梦, 沈朝, 张乐福. 25Cr-20Ni-ODS钢在超临界水中的腐蚀行为[J]. 腐蚀与防护, 2016, 37(4): 305-312. DOI: 10.11973/fsyfh-201604008
    HU Meng, SHEN Zhao, ZHANG Le-fu. Corrosion Behavior of 25Cr-20Ni-ODS Steel in Supercritical Water[J]. Corrosion & Protection, 2016, 37(4): 305-312. DOI: 10.11973/fsyfh-201604008
    Citation: HU Meng, SHEN Zhao, ZHANG Le-fu. Corrosion Behavior of 25Cr-20Ni-ODS Steel in Supercritical Water[J]. Corrosion & Protection, 2016, 37(4): 305-312. DOI: 10.11973/fsyfh-201604008

    25Cr-20Ni-ODS钢在超临界水中的腐蚀行为

    详细信息
      作者简介:

      张乐福(1967-),副教授,博士后,从事材料腐蚀研究,

    • 中图分类号: TG172.82

    Corrosion Behavior of 25Cr-20Ni-ODS Steel in Supercritical Water

    • 摘要: 通过腐蚀增重试验和慢应变速率试验(SSRT)研究了25Cr-20Ni-ODS钢在超临界水(SCW)中的腐蚀性能。结果表明:25Cr-20Ni-ODS钢在超临界水中的耐蚀性较好,腐蚀1 000 h后其腐蚀速率非常低;在600 ℃超临界水环境中试样发生了沿晶应力腐蚀开裂(IGSCC),且IGSCC敏感性随着溶解氧含量的增加而提高;而在650 ℃下,试样的断裂失效方式为塑性断裂,并没有观察到应力腐蚀开裂迹象。
      Abstract: Corrosion weight gain test and slow strain rate test (SSRT) were performed to evaluate the corrosion performance of 25Cr-20Ni-ODS steel in supercritical water (SCW). The results show that 25Cr-20Ni-ODS steel had good corrosion resistance in the SCW, and the corrosion rate was extremely low after corrosion for 1 000 h. Intergranular stress corrosion cracking (IGSCC) was observed in the SSRT at 600 ℃ and IGSCC susceptibility increased with the increase of dissolved oxygen (DO) concentration. But the failure mode was ductile fracture at 650 ℃ and no SCC was observed at this temperature.
    • [1] SQUARER D,SCHULENBERG T,STRUWE D,et al. High performance light water reactor[J]. Nuclear Engineering and Design,2003,221(1):167-180.
      [2] MAYER K H,BENDICK W,HUSEMANN R U,et al. New materials for improving the efficiency of fossil-fired thermal power stations[R]. Nuremberg (DE):GEC Alsthom Energie GmbH,1998.
      [3] BETHMONT M. Damage and lifetime of fossil power plant components[J]. Materials at High Temperatures,1998,15(3/4):231-238.
      [4] SCHVTZE M,SCHORR M,RENUSCH D P,et al. The role of alloy composition,environment and stresses for the oxidation resistance of modern 9% Cr steels for fossil power stations[J]. Materials Research,2004,7(1):111-123.
      [5] UKAI S,HARADA M,OKADA H,et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. Journal of Nuclear Materials,1993,204:65-73.
      [6] UKAI S,NISHIDA T,OKADA H,et al. Development of oxide dispersion strengthened ferritic steels for FBR core application,(I) improvement of mechanical properties by recrystallization processing[J]. Journal of Nuclear Science and Technology,1997,34(3):256-263.
      [7] ZHANG Q,TANG R,YIN K,et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science,2009,51(9):2092-2097.
      [8] ISSELIN J,KASADA R,KIMURA A. Corrosion behaviour of 16% Cr-4% Al and 16% Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment[J]. Corrosion Science,2010,52(10):3266-3270.
      [9] HU H,ZHOU Z,LI M,et al. Study of the corrosion behavior of a 18Cr-oxide dispersion strengthened steel in supercritical water[J]. Corrosion Science,2012,65(4):209-213.
      [10] GOMEZ-BRICENO D,BLAZQUEZ F,SAEZ-MADERUELO A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water[J]. The Journal of Supercritical Fluids,2013,78:103-113.
      [11] NOVOTNYR,JANK P,PENTTIL S,et al. High Cr ODS steels performance under supercritical water environment[J]. The Journal of Supercritical Fluids,2013,81:147-156.
      [12] WAS G S,TEYSSEYRE S,JIAO Z. Corrosion of austenitic alloys in supercritical water[J]. Corrosion,2006,62(11):989-1005.
      [13] BOYD W K,PRAY H A. Corrosion of stainless steels in supercritical water[J]. Corrosion Engineering,1957,13(6):33-42.
      [14] ATKINSON A. Transport processes during the growth of oxide films at elevated temperature[J]. Reviews of Modern Physics,1985,57(2):437.
      [15] AMPORNRAT P,WAS G S. Oxidation of ferritic-martensitic alloys T91,HCM12A and HT-9 in supercritical water[J]. Journal of Nuclear Materials,2007,371(1):1-17.
      [16] HU H L,ZHOU Z J,LIAO L,et al. Corrosion behavior of a 14Cr-ODS steel in supercritical water[J]. Journal of Nuclear Materials,2013,437(1):196-200.
      [17] WAS G S,AMPORNRAT P,GUPTA G,et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials,2007,371(1):176-201.
      [18] SUN M,WU X,ZHANG Z,et al. Analyses of oxide films grown on alloy 625 in oxidizing supercritical water[J]. The Journal of Supercritical Fluids,2008,47(2):309-317.
      [19] SUN M,WU X,ZHANG Z,et al. Oxidation of 316 stainless steel in supercritical water[J]. Corrosion Science,2009,51(5):1069-1072.
      [20] HALVARSSON M,TANG J E,ASTEMAN H,et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃[J]. Corrosion Science,2006,48(8):2014-2035.
      [21] GUPTA G,AMPORNRAT P,REN X,et al. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9[J]. Journal of Nuclear Materials,2007,361(2):160-173.
      [22] SHEN Z,ZHANG L,TANG R,et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials,2014,454(1):274-282.
      [23] MUTHUKUMAR N,LEE J H,KIMURA A. SCC behavior of austenitic and martensitic steels in supercritical pressurized water[J]. Journal of Nuclear Materials,2011,417(1):1221-1224.
      [24] NOVOTNY R,HHNER P,SIEGL J,et al. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions[J]. Journal of Nuclear Materials,2011,409(2):117-123.
      [25] TEYSSEYRE S,WAS G S. Stress corrosion cracking of austenitic alloys in supercritical water[J]. Corrosion,2006,62(12):1100-1116.
      [26] TSUBOTA M,KATAYAMA Y,KANAZAWA Y. Relation between the mechanical properties and scc behavior of the alloys used in high temperature water[C]//13th lnternational Conference on Environmental Regradation of Materials in Nuclear Power System 2007. [S.l.]:Canadia Nuclear Society,2007:1091-1101.
      [27] TSUCHIYA Y,KANO F,SAITO N,et al. SCC and irradiation properties of metals under supercritical-water cooled power reactor conditions[C]//Proceeding of the Annual Meeting of JSME/MMD. Kyoto,Japan:JSME,2003:741-742.
      [28] ARIOKA K,YAMADA T,TERACHI T,et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion,2007,63(12):1114-1123.
      [29] ARIOKA K,YAMADA T,TERACHI T,et al. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion,2006,62(1):74-83.
      [30] WAS G S,SUNG J K,ANGELIU T M. Effects of grain boundary chemistry on[J]. Metallurgical Transactions A,1992,23(1):3343-3359.
      [31] SHOJI T. Progress in the mechanistic understanding of BWR SCC and its implication to the prediction of SCC growth behavior in plants[C]//11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Stevenson Washington,USA:NACE,2003:588-598.
    计量
    • 文章访问数:  7
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-27
    • 刊出日期:  2016-04-14

    目录

      /

      返回文章
      返回