[1] |
SQUARER D,SCHULENBERG T,STRUWE D,et al. High performance light water reactor[J]. Nuclear Engineering and Design,2003,221(1):167-180.
|
[2] |
MAYER K H,BENDICK W,HUSEMANN R U,et al. New materials for improving the efficiency of fossil-fired thermal power stations[R]. Nuremberg (DE):GEC Alsthom Energie GmbH,1998.
|
[3] |
BETHMONT M. Damage and lifetime of fossil power plant components[J]. Materials at High Temperatures,1998,15(3/4):231-238.
|
[4] |
SCHVTZE M,SCHORR M,RENUSCH D P,et al. The role of alloy composition,environment and stresses for the oxidation resistance of modern 9% Cr steels for fossil power stations[J]. Materials Research,2004,7(1):111-123.
|
[5] |
UKAI S,HARADA M,OKADA H,et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. Journal of Nuclear Materials,1993,204:65-73.
|
[6] |
UKAI S,NISHIDA T,OKADA H,et al. Development of oxide dispersion strengthened ferritic steels for FBR core application,(I) improvement of mechanical properties by recrystallization processing[J]. Journal of Nuclear Science and Technology,1997,34(3):256-263.
|
[7] |
ZHANG Q,TANG R,YIN K,et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science,2009,51(9):2092-2097.
|
[8] |
ISSELIN J,KASADA R,KIMURA A. Corrosion behaviour of 16% Cr-4% Al and 16% Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment[J]. Corrosion Science,2010,52(10):3266-3270.
|
[9] |
HU H,ZHOU Z,LI M,et al. Study of the corrosion behavior of a 18Cr-oxide dispersion strengthened steel in supercritical water[J]. Corrosion Science,2012,65(4):209-213.
|
[10] |
GOMEZ-BRICENO D,BLAZQUEZ F,SAEZ-MADERUELO A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water[J]. The Journal of Supercritical Fluids,2013,78:103-113.
|
[11] |
NOVOTNYR,JANK P,PENTTIL S,et al. High Cr ODS steels performance under supercritical water environment[J]. The Journal of Supercritical Fluids,2013,81:147-156.
|
[12] |
WAS G S,TEYSSEYRE S,JIAO Z. Corrosion of austenitic alloys in supercritical water[J]. Corrosion,2006,62(11):989-1005.
|
[13] |
BOYD W K,PRAY H A. Corrosion of stainless steels in supercritical water[J]. Corrosion Engineering,1957,13(6):33-42.
|
[14] |
ATKINSON A. Transport processes during the growth of oxide films at elevated temperature[J]. Reviews of Modern Physics,1985,57(2):437.
|
[15] |
AMPORNRAT P,WAS G S. Oxidation of ferritic-martensitic alloys T91,HCM12A and HT-9 in supercritical water[J]. Journal of Nuclear Materials,2007,371(1):1-17.
|
[16] |
HU H L,ZHOU Z J,LIAO L,et al. Corrosion behavior of a 14Cr-ODS steel in supercritical water[J]. Journal of Nuclear Materials,2013,437(1):196-200.
|
[17] |
WAS G S,AMPORNRAT P,GUPTA G,et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials,2007,371(1):176-201.
|
[18] |
SUN M,WU X,ZHANG Z,et al. Analyses of oxide films grown on alloy 625 in oxidizing supercritical water[J]. The Journal of Supercritical Fluids,2008,47(2):309-317.
|
[19] |
SUN M,WU X,ZHANG Z,et al. Oxidation of 316 stainless steel in supercritical water[J]. Corrosion Science,2009,51(5):1069-1072.
|
[20] |
HALVARSSON M,TANG J E,ASTEMAN H,et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃[J]. Corrosion Science,2006,48(8):2014-2035.
|
[21] |
GUPTA G,AMPORNRAT P,REN X,et al. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9[J]. Journal of Nuclear Materials,2007,361(2):160-173.
|
[22] |
SHEN Z,ZHANG L,TANG R,et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials,2014,454(1):274-282.
|
[23] |
MUTHUKUMAR N,LEE J H,KIMURA A. SCC behavior of austenitic and martensitic steels in supercritical pressurized water[J]. Journal of Nuclear Materials,2011,417(1):1221-1224.
|
[24] |
NOVOTNY R,HHNER P,SIEGL J,et al. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions[J]. Journal of Nuclear Materials,2011,409(2):117-123.
|
[25] |
TEYSSEYRE S,WAS G S. Stress corrosion cracking of austenitic alloys in supercritical water[J]. Corrosion,2006,62(12):1100-1116.
|
[26] |
TSUBOTA M,KATAYAMA Y,KANAZAWA Y. Relation between the mechanical properties and scc behavior of the alloys used in high temperature water[C]//13th lnternational Conference on Environmental Regradation of Materials in Nuclear Power System 2007. [S.l.]:Canadia Nuclear Society,2007:1091-1101.
|
[27] |
TSUCHIYA Y,KANO F,SAITO N,et al. SCC and irradiation properties of metals under supercritical-water cooled power reactor conditions[C]//Proceeding of the Annual Meeting of JSME/MMD. Kyoto,Japan:JSME,2003:741-742.
|
[28] |
ARIOKA K,YAMADA T,TERACHI T,et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion,2007,63(12):1114-1123.
|
[29] |
ARIOKA K,YAMADA T,TERACHI T,et al. Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion,2006,62(1):74-83.
|
[30] |
WAS G S,SUNG J K,ANGELIU T M. Effects of grain boundary chemistry on[J]. Metallurgical Transactions A,1992,23(1):3343-3359.
|
[31] |
SHOJI T. Progress in the mechanistic understanding of BWR SCC and its implication to the prediction of SCC growth behavior in plants[C]//11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Stevenson Washington,USA:NACE,2003:588-598.
|