高级检索

    激光选区熔化成形钴铬合金的显微组织和拉伸性能

    曾小安, 张立婷, 邓清文, 刘海庆, 刘鹏宇

    曾小安, 张立婷, 邓清文, 刘海庆, 刘鹏宇. 激光选区熔化成形钴铬合金的显微组织和拉伸性能[J]. 机械工程材料, 2025, 49(4): 62-68. DOI: 10.11973/jxgccl240066
    引用本文: 曾小安, 张立婷, 邓清文, 刘海庆, 刘鹏宇. 激光选区熔化成形钴铬合金的显微组织和拉伸性能[J]. 机械工程材料, 2025, 49(4): 62-68. DOI: 10.11973/jxgccl240066
    ZENG Xiao´an, ZHANG Liting, DENG Qingwen, LIU Haiqing, LIU Pengyu. Microstructure and Tensile Properties of Co-Cr Alloy Formed by Laser Selective Melting[J]. Materials and Mechanical Engineering, 2025, 49(4): 62-68. DOI: 10.11973/jxgccl240066
    Citation: ZENG Xiao´an, ZHANG Liting, DENG Qingwen, LIU Haiqing, LIU Pengyu. Microstructure and Tensile Properties of Co-Cr Alloy Formed by Laser Selective Melting[J]. Materials and Mechanical Engineering, 2025, 49(4): 62-68. DOI: 10.11973/jxgccl240066

    激光选区熔化成形钴铬合金的显微组织和拉伸性能

    基金项目: 

    2023年广东省科技创新战略专项资金资助项目 pdjh2023a1068

    2023年广东省普通高校青年创新人才类项目 2023KQNCX282

    2023年云浮市科技计划项目 S2023020201

    云浮市2022年广东省科技创新战略专项(“大专项+任务清单”)项目 2022020409

    详细信息
      作者简介:

      曾小安(1990—),男,湖南邵阳人,助教,硕士

      通讯作者:

      通信作者:刘海庆副教授

    • 中图分类号: TG144

    Microstructure and Tensile Properties of Co-Cr Alloy Formed by Laser Selective Melting

    • 摘要:

      采用激光选区熔化技术制备钴铬合金,研究了不同方向(垂直和平行于成形方向)的显微组织、晶体结构和拉伸性能,根据显微组织特性分析了拉伸性能各向异性机理。结果表明:钴铬合金的显微组织表现出各向异性,平行于成形方向出现鱼鳞状轨迹,晶体呈柱状晶粒结构,而垂直于成形方向存在激光熔化轨迹,晶体呈细小胞状蜂窝排列的等轴晶粒结构;相比平行于成形方向,垂直于成形方向的小角度晶界占比和核平均错配度较大,施密特因子较小,抗拉强度和屈服强度分别增大了13.74%,16.55%,断后伸长率减小了15.64%,垂直于成形方向上呈高强度低塑性特征;钴铬合金拉伸性能的各向异性主要归因于不同方向细晶强化效应和位错密度等存在差异,平行和垂直于成形方向的拉伸断裂机制均为准解理断裂。

      Abstract:

      Co-Cr alloy was prepared by laser selective melting. The microstructure, crystal structure and tensile properties of the Co-Cr alloy in different directions (perpendicular and parallel to forming direction) were studied. The tensile properties anisotropy was analyzed according to microstructure characteristics. The results show that the microstructure of the CoCr alloy was anisotropic. There was a fish-scale trace on the face parallel to the forming direction, and the crystal had a columnar grain structure. There was a laser melting trace on the face perpendicular to the forming direction, and the crystal had a fine cellular honeycomb arranged equiaxial grain structure. Compared with those on the face parallel to forming direction, the proportion of grain boundaries at small angles and the mean nuclear mismatch on the face perpendicular to forming direction were large,the Schmid factor was small, the tensile strength and yield strength increased by 13.74% and 16.55%, respectively, and the percentage elongation after fracture decreased by 15.64%. The tensile properties in direction perpendicular to forming showed high strength and low plasticity. The anisotropy of tensile properties of Co-Cr alloy was mainly attributed to different fine grain strengthening effect and dislocation density in different directions, and the tensile fracture mechanism in direction parallel and perpendicular to forming direction was quasi-cleavage fracture.

    • 钴铬合金因具有耐腐蚀性和耐磨性好、强度高和生物相容性优良等特性而被广泛应用于牙科、骨科植入物等医疗植入物的生产中[1-3]。尽管采用传统铸造技术制备的钴铬合金产品在牙科修复体领域得到了一定程度应用[4],但是传统制造技术很难满足牙科领域个性化定制、精度高、成本低等新的市场要求,因此增材制造等新技术得到关注。

      作为增材制造技术之一的激光选区熔化(SLM)技术,通过高能激光束选择性地逐层熔化金属粉末来制造高致密性、形状复杂且尺寸精度高的零部件。目前,该技术已经成功应用于钛合金[5]、316L不锈钢[6-7]、铝[8]和钴基合金[9]等一系列金属制造中。对于熔点较高的钴铬合金,SLM技术激光束能量高,温度可达数千摄氏度,具有制备钴铬合金牙科修复体的潜力[10-11]。在过去的几年里,已有利用SLM技术成形钴铬合金的研究报道[12-13]。WANG等[14]建立了熔池的理论模型,确定了激光功率、扫描速度、扫描间距和熔池形态之间的关系,得到了激光熔化钴铬合金的最佳工艺。邓煜华等[15]利用SLM技术制备钴铬合金,获得了激光能量密度对钴铬合金熔池尺寸和力学性能的影响。YIN等[16]利用ANSYS19.0软件模拟SLM成形钴铬合金过程,预测了不同加工参数与热力学行为之间的关系,并研究了不同加工参数下试样的显微硬度和微观结构。LI等[17]采用成分和形态相同但粒径不同的钴铬合金粉末进行SLM成形,建立了微观结构和力学性能之间的关系。TONELLI等[18]以表面形貌、激光轨迹尺寸和硬度等为指标,优化了SLM成形Co-28Cr-6Mo合金的工艺参数,获取最佳激光能量密度,分析了缺陷形成机制,最大限度地提高了SLM成形件的整体质量。对于通过优化激光功率、扫描速度和扫描策略等工艺参数改善力学性能,系统性研究微观结构与力学性能各向异性的关系至关重要。

      作者采用SLM技术制备了钴铬合金,研究了不同方向的显微组织、晶体结构和拉伸性能,分析了显微组织特性与力学性能各向异性之间的关系,以期为深入理解SLM成形钴铬合金机理,并对进一步调控成形钴铬合金的微观结构和力学性能提供参考。

      试验原料为钴铬合金粉末,化学成分见表1,粉末颗粒为球形,粒径在15~53 μm。采用HANS-M-100型SLM成形设备在高纯氩气(氧气体积分数维持在10−3)中制备钴铬合金块状试样(尺寸10 mm×10 mm×10 mm)和拉伸试样(尺寸见图1,厚度为2 mm,成形方向分别平行和垂直于试样长度方向),激光功率为 180 W,激光光斑直径为70 μm,扫描间距为50 μm,扫描速度为1 200 mm·s−1,单层铺粉厚度为30 μm,采用逐行扫描策略,相邻粉末层扫描方向旋转角度为67°,基板预热温度为100 ℃。

      表  1  钴铬合金粉末的化学成分
      Table  1.  Chemical composition of Co-Cr alloy powder
      元素CoCrMoSiFeNOC
      质量分数/%26.815.720.690.11<0.1<0.1<0.01
      下载: 导出CSV 
      | 显示表格
      图  1  拉伸试样的尺寸
      Figure  1.  Size of tensile sample

      对块状试样进行砂纸打磨、金刚石膏抛光、乙醇和去离子水超声清洗后,用10 mL体积分数5%盐酸+4 g氧化铬混合溶液电解腐蚀10 s,采用9XB-PC型光学显微镜(OM)和ZEISS sigma500型场发射扫描电镜(SEM)观察平行和垂直于成形方向的微观形貌。将试样在体积分数10%高氯酸溶液中电解抛光60 s,电压为35 V,温度为−35 ℃,用乙醇清洗,采用OXFORD NordlysMax3型电子背散射衍射仪(EBSD)观察组织特征,使用channel 5软件处理数据,统计晶粒直径。采用UTM5105型万能材料试验机进行室温拉伸试验,载荷为20 kN,拉伸速度为0.5 mm·min−1,采用SEM观察拉伸断口形貌。

      图2可见:试样在垂直于成形方向上存在清晰的激光熔化轨迹,未见微裂纹、孔隙等缺陷;在平行于成形方向上可见鱼鳞状轨迹,重叠率高,熔池沿成形方向呈周期性排布,与文献[19]结果一致。

      图  2  SLM成形钴铬合金垂直和平行于成形方向的OM形貌
      Figure  2.  OM morphology perpendicular (a–b) and parallel (c–d) to forming direction of SLM forming Co-Cr alloy: (a, c) at low magnification and (b, d) at high magnification

      在激光选区熔化成形过程中,由于温度梯度和冷却速率较高,合金可能形成纳米级胞状晶体结构[20]。由图3可见:试样在垂直于成形方向上出现典型的胞状蜂窝排列等轴晶粒结构,胞状结构形状接近六边形或伸长六边形;在平行于成形方向上出现柱状晶粒结构,这是由于沿成形方向散热快,导致平行于成形上外延生长。

      图  3  SLM成形钴铬合金垂直和平行于成形方向的SEM形貌
      Figure  3.  SEM morphology perpendicular (a–b) and parallel (c–d) to forming direction of SLM forming Co-Cr alloy: (a, c) at low magnification and (b, d) at high magnification

      图4可见:垂直于成形方向上,扫描轨迹内部存在较粗的等轴晶,搭接区域为细小等轴晶,晶粒直径分布在0.81~76.92 μm范围内,平均直径为2.24 μm;平行于成形方向上,大部分晶粒为跨层柱状晶,晶粒直径较大,分布在0.82~105.36 μm范围内,平均直径为6.60 μm。统计可得:在垂直于成形方向上细小晶粒(0~6.6 μm)和较大晶粒(≥6.6 μm)占比分别为89.4%,10.6%,较大晶粒明显分布在扫描轨迹内部;平行于成形方向上细小晶粒和较大晶粒占比分别为2.8%,97.2%,这与文献[21]结果相符。由于激光选区熔化成形过程中熔池的冷却速率高达105 ℃·s−1[22],组织经历了非平衡热力学过程,晶粒发生了细化,但相比之下,垂直于成形方向上相邻晶粒差异明显,分散度较低。

      图  4  SLM成形钴铬合金垂直和平行于成形方向的EBSD分析结果
      Figure  4.  EBSD analysis results of SLM forming Co-Cr alloy perpendicular (a–d) and parallel (e–h) to forming direction: (a, e) grain morphology; (b, f) grain diameter distribution; (c, g) phase diagram and (d, h) inverse pole figure

      晶界角2°~15°为小角度晶界,晶界角大于15°为大角度晶界。图5中黑色晶界为小角度晶界,绿色晶界为大角度晶界,可见:垂直和平行于成形方向上小角度晶界占比分别为80.9%,77.8%,垂直于成形方向上小角度晶界占比更大。

      图  5  SLM成形钴铬合金垂直和平行于成形方向的晶界取向差分布与统计
      Figure  5.  Grain boundary orientation difference distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      随着施密特因子从0增加至0.5,晶体从硬取向变为软取向[21]。由图6可见:试样在垂直和平行于成形方向上的施密特因子均分布在0.265~0.500之间,平均值分别为0.444,0.452。两个方向上的晶体均表现出软取向状态,垂直于成形方向的施密特因子较小。

      图  6  SLM成形钴铬合金垂直和平行于成形方向的施密特因子分布和统计
      Figure  6.  Schmid factor distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      通常用核平均错配度(KAM)分布来评估位错密度,KAM较大表明位错密度较高[23-24]。由图7可见:垂直于成形方向上,KAM平均值、最大值和最小值分别为0.768°,2.450°,0.050°,局部位错较高值主要分布在重叠区域;平行于成形方向上,KAM平均值、最大值和最小值分别为0.515°,4.650°,0.050°;垂直于成形方向的KAM平均值较大,说明垂直于成形方向上位错密度较高。

      图  7  SLM成形钴铬合金垂直和平行于成形方向的KAM分布和统计
      Figure  7.  Kernel average misorientation distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      表2可知:SLM成形钴铬合金不同方向的抗拉强度、屈服强度和断后伸长率均明显高于ASTM F75-12《standard specification for cobalt-18 chromium-6 molybdenum alloy castings and casting alloy for surgical implants》中对钴铬合金铸件的要求,垂直于成形方向分别高出59.5%,6.9%,30.7%。采用SLM技术制备的钴铬合金具有高强度和良好的延展性,这主要归因于SLM成形零件在凝固过程中经历快速熔化和快速凝固过程,晶粒尺寸细小,起到了细晶强化的作用。

      表  2  SLM成形钴铬合金的拉伸性能
      Table  2.  Tensile properties of SLM forming Co-Cr alloy
      试样抗拉强度/MPa屈服强度/MPa断后伸长率/%
      垂直于成形方向平行于成形方向垂直于成形方向平行于成形方向垂直于成形方向平行于成形方向
      SLM成形钴铬合金1 13499764855610.4612.4
      Co-Cr合金铸件≤625≤520≤8
      下载: 导出CSV 
      | 显示表格

      相比平行于成形方向,SLM成形钴铬合金垂直于成形方向的抗拉强度和屈服强度分别提高了13.74%,16.55%,断后伸长率下降了15.64%,表现出明显的各向异性,并且垂直于成形方向的拉伸性能呈现高强度低塑性的特征。这主要是因为垂直于成形方向晶粒呈胞状蜂窝排列的等轴状,尺寸较小,晶界数量较多,能有效阻碍晶粒滑移[25],因此垂直于成形方向强度较高。此外,单晶塑性变形微观上具有滑移和孪生特征,产生剪切应变,作用在滑移面上沿滑移方向的剪切应力满足

      τσ=σscosλ×cosφ=σsμ (1)

      式中:τσ为沿滑移方向的剪切应力;σs为材料屈服强度;λ为应力与滑动方向的夹角;φ为应力与滑动平面垂直方向的夹角;μ为施密特因子。

      根据式(1),施密特因子越大,滑移系越容易启动,材料越容易变形[26]。SLM成形钴铬合金在垂直于成形方向的施密特因子较小,故强度较高。由于激光选区熔化技术的冷却速率高,合金在冷却过程中会形成大量位错。一般情况下,高位错密度下产生滑移需要外界提供更多能量,使得材料不容易破碎,从而增强强度。位错密度的大小可以用小角度晶界占比或核平均错配度反映,垂直于成形方向小角度晶界占比和核平均错配度较大,说明位错密度较大,故强度较高。然而,由于小角度晶界只需偏转较小角度便可使裂纹扩展至下一个晶界,这会导致材料断后伸长率下降,因此垂直于成形方向的塑性较差。

      图8可见:试样在垂直和平行于成形方向的拉伸断裂均主要为准解理断裂;垂直于成形方向的拉伸断口有大量韧窝,并保持裂缝的连续性,平行于成形方向断口有大量柱状特征,韧窝较小,且较不明显,这也进一步说明合金拉伸性能的各向异性。SLM成形钴铬合金柱状晶之间的晶界较弱,拉伸过程中容易撕裂[27]

      图  8  SLM成形钴铬合金垂直和平行于成形方向的拉伸断口形貌
      Figure  8.  Tensile fracture morphology of SLM forming Co-Cr alloy perpendicular (a) and parallel (b) to forming direction

      (1)激光选区熔化成形钴铬合金在平行于成形方向上存在鱼鳞状轨迹,晶体呈柱状晶粒结构,平均晶粒尺寸为6.6 μm;在垂直于成形方向上出现清晰激光熔化轨迹,晶体呈细小胞状蜂窝排列的等轴晶粒结构,平均晶粒尺寸为2.24 μm。

      (2)激光选区熔化成形钴铬合金的显微组织和拉伸性能均表现出各向异性:相比平行于成形方向,垂直于成形方向的小角度晶界占比和核平均错配度较大,施密特因子较小,抗拉强度和屈服强度分别增大了13.74%,16.55%,断后伸长率减小了15.64%。垂直于成形方向的拉伸性能呈高强度低塑性特征。

      (3)钴铬合金拉伸性能的各向异性主要归因于不同方向细晶强化效应和位错密度等存在差异,其拉伸断裂机制为准解理断裂。

    • 图  1   拉伸试样的尺寸

      Figure  1.   Size of tensile sample

      图  2   SLM成形钴铬合金垂直和平行于成形方向的OM形貌

      Figure  2.   OM morphology perpendicular (a–b) and parallel (c–d) to forming direction of SLM forming Co-Cr alloy: (a, c) at low magnification and (b, d) at high magnification

      图  3   SLM成形钴铬合金垂直和平行于成形方向的SEM形貌

      Figure  3.   SEM morphology perpendicular (a–b) and parallel (c–d) to forming direction of SLM forming Co-Cr alloy: (a, c) at low magnification and (b, d) at high magnification

      图  4   SLM成形钴铬合金垂直和平行于成形方向的EBSD分析结果

      Figure  4.   EBSD analysis results of SLM forming Co-Cr alloy perpendicular (a–d) and parallel (e–h) to forming direction: (a, e) grain morphology; (b, f) grain diameter distribution; (c, g) phase diagram and (d, h) inverse pole figure

      图  5   SLM成形钴铬合金垂直和平行于成形方向的晶界取向差分布与统计

      Figure  5.   Grain boundary orientation difference distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      图  6   SLM成形钴铬合金垂直和平行于成形方向的施密特因子分布和统计

      Figure  6.   Schmid factor distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      图  7   SLM成形钴铬合金垂直和平行于成形方向的KAM分布和统计

      Figure  7.   Kernel average misorientation distribution (a, c) and statistics (b, d) of SLM forming Co-Cr alloy perpendicular (a–b) and parallel (c–d) to forming direction

      图  8   SLM成形钴铬合金垂直和平行于成形方向的拉伸断口形貌

      Figure  8.   Tensile fracture morphology of SLM forming Co-Cr alloy perpendicular (a) and parallel (b) to forming direction

      表  1   钴铬合金粉末的化学成分

      Table  1   Chemical composition of Co-Cr alloy powder

      元素CoCrMoSiFeNOC
      质量分数/%26.815.720.690.11<0.1<0.1<0.01
      下载: 导出CSV

      表  2   SLM成形钴铬合金的拉伸性能

      Table  2   Tensile properties of SLM forming Co-Cr alloy

      试样抗拉强度/MPa屈服强度/MPa断后伸长率/%
      垂直于成形方向平行于成形方向垂直于成形方向平行于成形方向垂直于成形方向平行于成形方向
      SLM成形钴铬合金1 13499764855610.4612.4
      Co-Cr合金铸件≤625≤520≤8
      下载: 导出CSV
    • [1] ROUDNICKA M ,BIGAS J ,MOLNAROVA O ,et al. Different response of cast and 3D-printed Co-Cr-Mo alloy to heat treatment:A thorough microstructure characterization[J]. Metals,2021,11(5):687.
      [2] MOHAMED A ,TAKAICHI A ,KAJIMA Y ,et al. Reusing the Co-Cr-Mo support structures of selective laser melted parts:Evaluation of mechanical properties and microstructures[J]. Sustainable Materials and Technologies,2023,36:e00608.
      [3] NARAYANAN D ,LIU M ,KUTTOLAMADOM M ,et al. Identification and development of a new local corrosion mechanism in a laser engineered net shaped (LENS) biomedical Co-Cr-Mo alloy in Hank's solution[J]. Corrosion Science,2022,207:110599.
      [4] OZKOMUR A ,UCAR Y ,EKREN O ,et al. Characterization of the interface between cast-to Co-Cr implant cylinders and cast Co-Cr alloys[J]. The Journal of Prosthetic Dentistry,2016,115(5):592-600.
      [5] 卢海飞,吕继铭,罗开玉,等. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报,2023,59(1):125-135.

      LU H F ,LV J M ,LUO K Y ,et al. Microstructure and mechanical properties of Ti6Al4V alloy by laser integrated additive manufacturing with alternately thermal/mechanical effects[J]. Acta Metallurgica Sinica,2023,59(1):125-135.

      [6] 雷经发,葛永胜,刘涛,等. 激光选区熔化316L不锈钢动态力学性能研究[J]. 激光与光电子学进展,2021,58(23):2314009.

      LEI J F ,GE Y S ,LIU T ,et al. Research on dynamic mechanical properties of 316L stainless steel processed using selective laser melting[J]. Laser and Optoelectronics Progress,2021,58(23):2314009.

      [7] RIVOLTA B ,GEROSA R ,PANZERI D. Selective laser melted 316L stainless steel:Influence of surface and inner defects on fatigue behavior[J]. International Journal of Fatigue,2023,172:107664.
      [8] 顾冬冬,张晗,刘刚,等. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报,2021,42(10):524868.

      GU D D ,ZHANG H ,LIU G ,et al. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):524868.

      [9] SINGH D ,TOBIN D ,DOWLING L ,et al. Optimization of cobalt chrome 3D re-entrant auxetics fabricated using selective laser melting[J]. Engineering Structures,2023,278:115542.
      [10] FELLAH M ,HEZIL N ,BOURAS D ,et al. Structural,mechanical and tribological performance of a nano structured biomaterial Co-Cr-Mo alloy synthesized via mechanical alloying[J]. Journal of Materials Research and Technology,2023,25:2152-2165.
      [11] 宗学文,张健,刘文杰. 选区激光熔化成形Hastelloy X合金有限元模拟及组织性能的各向异性[J]. 稀有金属材料与工程,2021,50(4):1304-1310.

      ZONG X W ,ZHANG J ,LIU W J. Finite element simulation and anisotropy of microstructure and properties for selective laser melting formed hastelloy X alloy[J]. Rare Metal Materials and Engineering,2021,50(4):1304-1310.

      [12] AL-ALOOSI R A ,ÇOMAKLI O ,YAZICI M ,et al. Influence of scanning velocity on a CoCrMoW alloy built via selective laser melting:Microstructure,mechanical,and tribological properties[J]. Journal of Materials Engineering and Performance,2023,32(15):6717-6724.
      [13] 高明香,王建宏,任杰,等. 扫描策略对选区激光熔化钴铬合金组织和性能的影响[J]. 激光杂志,2020,41(1):133-136.

      GAO M X ,WANG J H ,REN J ,et al. Effects of scanning strategies on microstructure and properties of selective laser melted cobalt-chromium alloy[J]. Laser Journal,2020,41(1):133-136.

      [14] WANG J H ,REN J ,LIU W ,et al. Effect of selective laser melting process parameters on microstructure and properties of Co-Cr alloy[J]. Materials,2018,11(9):1546.
      [15] 邓煜华,黎振华,姚碧波,等. 激光功率与扫描速度对选区激光熔化钴铬合金组织性能的影响[J]. 表面技术,2023,52(1):325-335.

      DENG Y H ,LI Z H ,YAO B B ,et al. Effect of laser power and scanning speed on microstructure and properties of Co-Cr alloy by selective laser melting[J]. Surface Technology,2023,52(1):325-335.

      [16] YIN J N ,LIU W ,CAO Y ,et al. Rapid prediction of the relationship between processing parameters and molten pool during selective laser melting of cobalt-chromium alloy powder:Simulation and experiment[J]. Journal of Alloys and Compounds,2022,892:162200.
      [17] LI K F ,MAO X H ,KHANLARI K ,et al. Effects of powder size distribution on the microstructural and mechanical properties of a Co-Cr-W-Si alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds,2020,825:153973.
      [18] TONELLI L ,FORTUNATO A ,CESCHINI L. CoCr alloy processed by selective laser melting (SLM):Effect of laser energy density on microstructure,surface morphology,and hardness[J]. Journal of Manufacturing Processes,2020,52:106-119.
      [19] WEI W ,ZHOU Y N ,SUN Q ,et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures[J]. Metallurgical and Materials Transactions A,2020,51(6):3205-3214.
      [20] 余晨帆,赵聪聪,张哲峰,等. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报,2020,56(5):683-692.

      YU C F ,ZHAO C C ,ZHANG Z F ,et al. Tensile properties of selective laser melted 316L stainless steel[J]. Acta Metallurgica Sinica,2020,56(5):683-692.

      [21] ZONG X W ,WEN J ,YANG Y M ,et al. Anisotropy in microstructure and impact toughness of 316L austenitic stainless steel produced by selective laser melting[J]. Rare Metal Materials and Engineering,2020,49(12):4031-4040.
      [22] 张楠,张海武,王淼辉,等. 微米级选区激光熔化316L不锈钢拉伸变形中Σ3n特殊晶界的分布[J]. 焊接学报,2023,44(1):33-39.

      ZHANG N ,ZHANG H W ,WANG M H ,et al. Study on special grain boundary distribution of Σ3n in micron selective laser melting of 316L stainless steel during tensile deformation[J]. Transactions of the China Welding Institution,2023,44(1):33-39.

      [23] CALCAGNOTTO M ,PONGE D ,DEMIR E ,et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering:A,2010,527(10/11):2738-2746.
      [24] ATEBA BETANDA Y ,HELBERT A L ,BRISSET F ,et al. Measurement of stored energy in Fe–48%Ni alloys strongly cold-rolled using three approaches:Neutron diffraction,Dillamore and KAM approaches[J]. Materials Science and Engineering:A,2014,614:193-198.
      [25] SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect[J]. Materials Science and Engineering:A,2012,531:112-118.
      [26] CHEN Z ,CHEN S G ,WEI Z Y ,et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting[J]. Progress in Natural Science:Materials International,2018,28(4):496-504.
      [27] ZHANG X ,XU H ,LI Z J ,et al. Effect of the scanning strategy on microstructure and mechanical anisotropy of Hastelloy X superalloy produced by laser powder bed fusion[J]. Materials Characterization,2021,173:110951.
    图(8)  /  表(2)
    计量
    • 文章访问数:  25
    • HTML全文浏览量:  4
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-02-04
    • 修回日期:  2025-03-08
    • 网络出版日期:  2025-03-23
    • 刊出日期:  2025-04-19

    目录

    /

    返回文章
    返回