Page 57 - 电力与能源2023年第四期
P. 57
邵佳佳,等:面向电力市场交易的客户电量预测技术研究 363
[5] J YADONG. Research and application of convolution neu⁃ term load forecasting of multi-layer LSTM neural network
.
ral network[D] Chengdu:University of Electronic Science considering temperature fuzzification[C]//IEEE Confer⁃
and Technology of China,2018. ence on Sustainable Power and Energy,2020.
[6] Y LECUN,Y BENGIO,G HINTON. Deep learning[J] . [16] N A MASOOD,M Z SADI,S R DEEBA,et al. Analyz⁃
Nature 2015. ing the Impact of temperature on electrical load[C]//Inter⁃
[7] H SHI,M H XU,R LI. Deep learning for household load national Conference on Power Engineering and Optimiza⁃
.
forecasting:a novel pooling deep RNN[J] IEEE Transac⁃ tion,2010.
tions on Smart Grid,2018. [17] H JINGJIE,L YINHONG,L YANGHENG. Summer
[8] S HOCHREITER,J CHMIDHUBER. Long short-term daily peak load forecasting considering accumulation effect
memory[J] Neural Computation,1997. and abrupt change of temperature[C]//Power and Energy
.
[9] X MINGLEI. Short-term residence load forecast based on Society General Meeting,2012.
LSTM network[J] Guangdong Electric power,2019. [18] L QIRONG,W QIAOQIAO,Z GUILIN,et al. Maxi⁃
.
[10] L JIXIANG,Z QIPEI,Y ZHIHONG,et al. Short-term load mum daily load forecasting based on support vector regres⁃
forecasting method based on CNN-LSTM hybrid neural net⁃ sion considering accumulated temperature effect[C]//Con⁃
.
work model[J] Automation of Electric Power Systems,2019. ference of Chinese Control and Decision,2018.
[11] Y LECUN,Y BENGIO,G HINTON. Deep Learning[J] . [19] T GUAN,Z XU,L LIN,et al. Maximum incremental load
Nature 2015. recursive model based on LS-SVM considering accumu⁃
[12] J YADONG. Research and application of convolution neu⁃ lated temperature effect[C]//IEEE Int. Conf. on Internet
ral network[D] Chengdu:University of Electronic Science of Things,2018.
.
and Technology of China,2018. [20] H LI,Z LEI,W TAO,et al. Short-term load forecasting
[13] H SHI,M XU,R LI. Deep learning for household load based on suport vector regression considering cooling load
.
forecasting:a novel pooling deep RNN[J] IEEE Transac⁃ in summer[C]//China Conference on Control and Deci⁃
tions on Smart Grid,2018. sion,2020.
[14] Z LINYAO,S PENGJIA,L XINYI,D. PEIREN,et al. [21] H JIANGLIN,C ZHENGHONG. A relationship between
Air-conditioning load forecasting based on seasonal decom⁃ daily electric loads and meteorological elements in central
.
position and ARIMA model[C]//International Confernece China[J] Meteorological Monthly,2002.
on Advance Computing and Innovative Technologies in En⁃ 收稿日期:2023-04-19
gineering,2021. (本文编辑:赵艳粉)
[15] R ZHICHAO,C CHAO,DYINGYING,et al. Short-
(上接第 343 页)
障,并且能快速有效地进行故障隔离及负荷转移。
参考文献:
[1] 丘 明 . 超导输电技术在电网中的应用[J] 电工电能新技
.
术,2017,36(10):55-62.
[2] 李红雷,林 一,黄兴德 . 高温超导电缆在大都市电网的应
用前景[J] 电力与能源,2017,38(3):255-257.
.
[3] 冯湘波 . 高温超导材料在未来电力系统中的应用[J] 大众
.
用电,2001(12):22.
[4] 宗曦华,魏 东 . 高温超导电缆研究与应用新进展[J] 电
.
线电缆,2013(5):1-3.
[5] 郭立杰 . 冷绝缘高温超导电缆的稳定性研究[D] 北京:北
.
京交通大学,2012.
图 3 超导电缆保护动作逻辑 [6] 科技情报室 . 超导技术在电力系统中的应用综述[J] 上海
.
零序电流保护作为电气量后备保护;以非电气量保 电力,2019(2):1-19.
护作为超导电缆冷却系统的保护。整套保护方案涵 收稿日期:2023-05-11
(本文编辑:赵艳粉)
盖了各种可能影响超导电缆正常运行的异常或者故

