Page 88 - 电力与能源2023年第六期
P. 88
634 吴 迪,等:具有非理想气体工质的往复式 Brayton 循环多目标优化
217-222. [23] GONG Q R,GE Y L,CHEN L G,et al. Performance
[10] ANGULO-BROWN F. An ecological optimization crite⁃ analyses and four-objective optimizations of an irreversible
rion for finite-time heat engines[J] Jourrnal of Applied rectangular cycle[J] Entropy,2021,23(9):1203.
.
.
Physics,1991,69(11):7465-7469. [24] QIU X F,CHEN L G,GE Y L,et al. Efficient power
[11] SAHIN B,KODAL A,YAVUZ H. Efficiency of a Joule- analysis and five-objective optimization for a simple endor-
Brayton engine at maximum power density[J] Journal of eversible closed Brayton cycle [J] Case Studies in Thermal
.
.
Applied Physics D:Applied Physics,1995,28( 7):1309. Engineering Eng.,2022,39:102415.
[12] SAHIN B,KODAL A,YILMAZ T,et al. Maximum [25] WU Q K,GE Y L,CHEN L G,et al. Multi-objective op-
power density analysis of an irreversible Joule-Brayton en⁃ timization of endoreversible magnetohydrodynamic cycle
.
gine[J] Journal of Physics. D:Applied Physics,1996,29 [J] Energy Reports,2022,8:8918-8927.
.
(5):1162. [26] 孙久勋 . 以范德瓦耳斯气体为工质的 3 种热机循环效率
[13] 戈延林 . 不可逆内燃机循环有限时间热力学分析与优化 [J] 物理与工程,2013,23(6):22-25.
.
.
[D] 武汉:海军工程大学,2011. [27] 张国文,张拴珠 . 非理想气体的卡诺循环[J] 雁北师范学
.
[14] UST Y,SAHIN B,KODAL A. Performance analysis of 院学报,2005,21(5):63-65.
an irreversible Brayton heat engine based on ecological coef⁃ [28] MADAKAVIL A S,KIM I. Heat engines running upon a
ficient of performance criterion[J] Intemational Journal of non-ideal fluid model with higher efficiencies than upon the
.
.
Thermal Science,2006,45(1):94-101. ideal gas model[J] Internal Journal of Thermodyn.,2017,
[15] 沈佳锋,戈延林,陈林根,等 . 内可逆往复式 Maisotsenko- 20(1):16-24.
.
Brayton 循环生态学性能优化[J] 电力与能源 ,2018 ,39 [29] 吴 迪,戈延林,陈林根,等 . 非理想气体工质对内可逆
.
(6):733-739. Otto 循环功率、效率性能的影响[J] 节能,2023,42(1):
[16] 施双双,戈延林,陈林根 . 不可逆往复式 Brayton 循环性 30-33.
能分析与多目标优化:1. 功 率 密 度 分析[J] 热力透平, [30] 吴 迪,戈延林,陈林根,等 . 具有非理想气体工质不可
.
2022,51(1):21-25. 逆 Otto 循环多目标优化[C]//高等学校工程热物理第二
[17] 施双双,戈延林,陈林根 . 不可逆往复式 Brayton 循环性能 十九届全国学术会议论文 . 2023.
.
分析与多目标优化:2. 多目标优化[J] 热力透平,2022,51 [31] 陈 茂,戈延林,陈林根,等 . 非理想气体工质对内可逆
.
(2):75-80. Dual 循环最优功率效率性能的影响[J] 大学物理,2023,
[18] 施双双 . 内燃机循环功率密度分析和多目标优化[D] 武 42(6):61-66.
.
汉:武汉工程大学,2022. [32] 陈 茂,戈延林,陈林根,等 . 具有非理想气体工质的不
[19] LI Y Q,LIAO S M,LIU G. Thermo-economic multi- 可逆 Miller 循环最优性能[C]//高等学校工程热物理第二
objective optimization for a solar-dish Brayton system using 十九届全国学术会议论文 . 2023.
.
NSGA-II and decision making[J] Intemational Journal of [33] GE Y L,CHEN L G,SUN F R. Performance of recipro⁃
f
Electrical Power & Energy Systews,2015,64:167-175. cating Brayton cycle with heat transfer,riction and variable
.
[20] JOKAR M A,AHMADI M H,SHARIFPUR M,et al. specific heats of working fluid[J] Intemational Journal of
Thermodynamic evaluation and multi-objective optimization Ambient Energy,2008,29(2):65-75.
of molten carbonate fuel cell-supercritical CO 2 Brayton [34] KLEIN S A. An explanation for observed compression ra -
.
cycle hybrid system[J] Energy Conversion ard Manage⁃ tios in internal combustion engines[J] Transactions of the
.
ment,2017,153:538-556. ASME, Journal of Engineering for Gas Turbine and
[21] GHASEMKHANI A,FARAHAT S,NASERIAN M M. Power,1991,113(4):511-513.
[35] ANGULO-BROWN F,FERNANDEZ-BETANZOS J,
Multi-objective optimization and decision making of endor-
eversible combined cycles with consideration of different DIAZ-PICO C A. Compression ratio of an optimized air
.
heat exchangers by finite time thermodynamics[J] Energy standard Otto-cycle model[J] European Journal of Phys⁃
.
Conversion ard Management,2018,171:1052-1062. ics,1994,15(1):38-42.
[36] 陈林根 ,孙丰瑞 ,陈文振 . 热 力 循 环 的 生 态 学 品 质 因 素
[22] WU Z X, FENG H J, CHEN L G, et al. Performance opti
.
-mization of a condenser in ocean thermal energy conversion [J] 热能动力工程,1994,9(6):374-376.
(OTEC) system based on constructal theory and multi- 收稿日期:2023-08-12
.
objective genetic algorithm [J] Entropy,2020,22(6):641. (本文编辑:赵艳粉)

