Page 88 - 电力与能源2023年第六期
P. 88

634                吴  迪,等:具有非理想气体工质的往复式 Brayton 循环多目标优化


                    217-222.                                    [23] GONG  Q  R,GE  Y  L,CHEN  L  G,et  al.  Performance


                [10] ANGULO-BROWN  F.  An  ecological  optimization  crite⁃  analyses  and  four-objective  optimizations  of  an  irreversible
                    rion  for  finite-time  heat  engines[J]  Jourrnal  of  Applied   rectangular cycle[J] Entropy,2021,23(9):1203.
                                             .
                                                                                  .
                    Physics,1991,69(11):7465-7469.              [24] QIU  X  F,CHEN  L  G,GE  Y  L,et  al.  Efficient  power




                [11] SAHIN B,KODAL A,YAVUZ H. Efficiency of a Joule-   analysis and five-objective optimization for a simple endor-


                    Brayton  engine  at  maximum  power  density[J]  Journal  of   eversible closed Brayton cycle [J] Case Studies in Thermal
                                                    .
                                                                                           .
                    Applied Physics D:Applied Physics,1995,28( 7):1309.  Engineering Eng.,2022,39:102415.






                [12] SAHIN  B,KODAL  A,YILMAZ  T,et  al.  Maximum   [25] WU Q K,GE Y L,CHEN L G,et al. Multi-objective op-

                    power  density  analysis  of  an  irreversible  Joule-Brayton  en⁃  timization  of  endoreversible  magnetohydrodynamic  cycle
                                                                       .
                    gine[J]  Journal  of  Physics.  D:Applied  Physics,1996,29  [J] Energy Reports,2022,8:8918-8927.
                          .
                    (5):1162.                                   [26] 孙久勋 . 以范德瓦耳斯气体为工质的 3 种热机循环效率
                [13] 戈延林 . 不可逆内燃机循环有限时间热力学分析与优化                     [J] 物理与工程,2013,23(6):22-25.
                                                                       .
                                                                                                   .

                    [D] 武汉:海军工程大学,2011.                         [27] 张国文,张拴珠 . 非理想气体的卡诺循环[J] 雁北师范学
                       .
                [14] UST  Y,SAHIN  B,KODAL  A.  Performance  analysis  of   院学报,2005,21(5):63-65.



                    an irreversible Brayton heat engine based on ecological coef⁃  [28] MADAKAVIL A S,KIM I. Heat engines running upon a
                    ficient  of  performance  criterion[J]  Intemational  Journal  of   non-ideal fluid model with higher efficiencies than upon the
                                           .
                                                                                 .

                    Thermal Science,2006,45(1):94-101.               ideal gas model[J] Internal Journal of Thermodyn.,2017,




                [15] 沈佳锋,戈延林,陈林根,等 . 内可逆往复式 Maisotsenko-             20(1):16-24.



                                            .
                    Brayton 循环生态学性能优化[J] 电力与能源 ,2018 ,39        [29] 吴  迪,戈延林,陈林根,等 . 非理想气体工质对内可逆
                                                                                              .

                    (6):733-739.                                     Otto 循环功率、效率性能的影响[J] 节能,2023,42(1):
                [16] 施双双,戈延林,陈林根 . 不可逆往复式 Brayton 循环性                30-33.


                    能分析与多目标优化:1. 功 率 密 度 分析[J] 热力透平,            [30] 吴  迪,戈延林,陈林根,等 . 具有非理想气体工质不可



                                                    .
                    2022,51(1):21-25.                                逆 Otto 循环多目标优化[C]//高等学校工程热物理第二
                [17] 施双双,戈延林,陈林根 . 不可逆往复式 Brayton 循环性能               十九届全国学术会议论文 . 2023.





                                              .
                    分析与多目标优化:2. 多目标优化[J] 热力透平,2022,51           [31] 陈  茂,戈延林,陈林根,等 . 非理想气体工质对内可逆

                                                                                                .
                    (2):75-80.                                       Dual 循环最优功率效率性能的影响[J] 大学物理,2023,
                [18] 施双双 . 内燃机循环功率密度分析和多目标优化[D] 武                    42(6):61-66.
                                                         .



                    汉:武汉工程大学,2022.                              [32] 陈  茂,戈延林,陈林根,等 . 具有非理想气体工质的不
                [19] LI  Y  Q,LIAO  S  M,LIU  G.  Thermo-economic  multi-  可逆 Miller 循环最优性能[C]//高等学校工程热物理第二


                    objective optimization for a solar-dish Brayton system using   十九届全国学术会议论文 . 2023.


                                           .
                    NSGA-II  and  decision  making[J]  Intemational  Journal  of   [33] GE Y L,CHEN L G,SUN F R. Performance of recipro⁃
                                                                                               f

                    Electrical Power & Energy Systews,2015,64:167-175.  cating Brayton cycle with heat transfer,riction and variable
                                                                                            .



                [20] JOKAR  M  A,AHMADI  M  H,SHARIFPUR  M,et  al.   specific  heats  of  working  fluid[J]  Intemational  Journal  of

                    Thermodynamic evaluation and multi-objective optimization   Ambient Energy,2008,29(2):65-75.
                    of  molten  carbonate  fuel  cell-supercritical  CO 2   Brayton   [34] KLEIN S A. An explanation for observed compression ra -
                                                                                              .
                    cycle  hybrid  system[J]  Energy  Conversion  ard  Manage⁃  tios in internal combustion engines[J] Transactions of the
                                     .


                    ment,2017,153:538-556.                           ASME, Journal  of  Engineering  for  Gas  Turbine  and

                [21] GHASEMKHANI A,FARAHAT S,NASERIAN M M.           Power,1991,113(4):511-513.

                                                                [35] ANGULO-BROWN  F,FERNANDEZ-BETANZOS  J,

                    Multi-objective optimization and decision making of endor-
                    eversible  combined  cycles  with  consideration  of  different   DIAZ-PICO  C  A.  Compression  ratio  of  an  optimized  air
                                                                                         .
                    heat exchangers by finite time thermodynamics[J] Energy   standard  Otto-cycle  model[J]  European  Journal  of  Phys⁃
                                                      .


                    Conversion ard Management,2018,171:1052-1062.    ics,1994,15(1):38-42.
                                                                [36] 陈林根 ,孙丰瑞 ,陈文振 . 热 力 循 环 的 生 态 学 品 质 因 素


                [22] WU Z X,  FENG H J, CHEN L G, et al. Performance opti
                                                                       .
                    -mization of a condenser in ocean thermal energy conversion   [J] 热能动力工程,1994,9(6):374-376.
                    (OTEC) system  based  on  constructal  theory  and  multi-              收稿日期:2023-08-12


                                         .
                    objective  genetic algorithm [J] Entropy,2020,22(6):641.                  (本文编辑:赵艳粉)
   83   84   85   86   87   88   89   90   91   92   93